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PREFACE 

This text for the Mathematics: Analysis and Approaches 

course has been prepared to closely align with the current 

course. 

It has concise explanations, clear diagrams and calculator 

references. 

Appropriate, graded exercises are provided throughout. 

Also relating to International Perspectives and the Theory 

of Knowledge, it provides more than just the basics. It is an 

essential resource for those teachers and students who are 

looking for a reliable guide for their SL course. 

This is a re-worked and revised edition of the Standard Level 

text first published by IBID Press in 1997. 

2nd Edition published in 1999 

3rd Edition published in 2004 

4th Edition published 2012 

5th Edition published in 2018 

6th Edition published in 2019 

Rounding 

When carrying an answer from one part of a calculation to 

a subsequent part, it is best to use unrounded values. For 

example: 

A semicircle is constructed on the hypotenuse of a 2 cm right 

angled triangle. Find its area correct to 4 significant figures. 

2
c
m
 

  

2cm 

Stage 1: 

Calculate the length of the hypotenuse using the theorem of 

Pythagoras: 

V2% +2% =2.828(4 s.f) 

  

Stage 2 

Find the area of the circle and halve it: 

.51 2 - 
Area = Eflr“ = E”X 2828 =1256 cm (4 s.f.) 

In this text, we will show calculations in this way as, we 

believe, students will be able to follow our explanations more 

easily if we do this. 

However, if using a calculator, the best procedure is to use the 

memory to store a full accuracy version of the radius (second 

line). 

  

  

2.828427125 
Ans-R 

2.828427125 
. 5XxR2 

12.56637061 

    

  

  

Rounding this gives the answer 12.57 cm? (4 s.f.) 

Note that the two answers are different. We understand that 

both answers are usually marked correct in examinations. 

However, we suggest that using the memory and the calculator 

value of 7t (not 3.14) is the better method. 

Calculators 

Students who are thoroughly familiar with the capabilities of 

their model of calculator place themselves at a considerable 

advantage over students who are not. 

In preparing a text such as this, we cannot provide an 

exhaustive account of every place in which a calculator can 

help. Or, for that matter, an explanation of how each model 

works! 

This text uses examples from Texas Instruments and Casio 

graphic calculators. 

The manufacturers all provide extensive 'manuals'. These can 

be intimidating. 

We suggest that a good strategy is to take each topic and, as 

you are learning it, take some time to discover your model's 

capability in that topic.



- 

For example, Section 1.3 deals with counting principles. It 

is highly likely your calculator will be very helpful here. A 

good strategy can be to 'Google' or 'Bing' your model plus 

the topic. 

There are now a number of training videos available on 

YouTube. 

Answers 

Answers to the Exercises are available as a free download 

from the publisher's website: 

www.ibid.com.au 

Also, there are QR codes embedded in the text that link 

directly to these. 

Online Errata 

  

Supplementary Material 

  

   



  

TABLE OF CONTENTS 

A: NUMBER AND ALGEBRA 

A.5 Counting Principles 

A.6 Partial Fractions 

A.7 Complex Numbers 

A.8 Proof 

A.9 Systems of Linear 

B: FUNCTIONS 

B.5 Factor and Remainder Theorem 

B.6 Rational Functions 

B.7 Further Functions 

B.8 Modulus Function and Solving Inequalties 

C: TRIGONOMETRY AND GEOMETRY 

C.8 Reciprocal and Inverse Trigonometric Functions 

C.9 Further Identities 

C.10 Trigonometric Functions 

C.11 Vectors 

D: STATISTICS AND PROBABILITY 

D.7 Bayes'Theorem 

D.8 Further Probability 

E: CALCULUS 

E.7 Continuity and Differentiability 

E.8 Further Limits 

E.9 Implicit Differentiation 

E.10 Integration Methods 

E.11 Differential Equations 

Index 

vi   

15 

23 

47 

57 

66 

77 

85 

93 

104 

115 

119 

125 

180 

185 

200 

209 

213 

225 

247 

265



BN 

T 

SECTICRLONE 
" 
15 

 



  

Permutations 

Permutations represents a counting process where the 

order must be taken into account. 

For example, the number of permutations of the letters A, B, 

Cand D, if only two are taken at a time, can be enumerated as 

AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC 

That is, AC is a different permutation from CA (different 

order). 

Instead of permutation the term arrangement is often used. 

This definition leads to a number of Counting Principles 

which we now look at. 

Multiplication principle 

  

For example, if a die is rolled twice, there are a total of 6> = 36 

possible outcomes. 

  

For example, if a person has three different coloured pairs 

of pants, four different shirts, five different ties and three 

different coloured pairs of socks, the total number of different 

ways that this person can dress is equal to 3x4x5x3=180 

ways. 

Rule 3: 

  

Because of the common usage of this expression, we use the 

factorial notation. That is, we write: 

n=nxm-1)x(Mn-2)x...3x2x1. 

which is read as n factorial. Notice also that 0! is defined as 

I ie.0l=1. 

For example, in how many ways can 4 boys and 3 girls be 

seated on a park bench? In this case any one of the seven 

children can be seated at one end, meaning that the adjacent 

position can be filled by any one of the remaining six children, 

similarly, the next adjacent seat can be occupied by any one of 

the remaining 5 children, and soon. .. 

Therefore, in total there are 7x6x5x4x3x2x1 = 5040 possible 

arrangements. 

Example A.5.1 
John wishes to get from town A to town C via town B. 
There are three roads connecting town A to town B and 

4 roads connecting town B to town C. In how many 

different ways can John get from town A to town C? 

 



  

We start by visualizing this situation: 

A 

B 

: c 

Consider the case where John uses Road 1 first. 

% 
The possibilities are: 

Road 1 then a, Road 1 then b, Road 1 then ¢, Road 1 then d. 

That is, there are 4 possible routes. Then, for each possible 

road from A to B there are another 4 leading from B to C. 

All in all, there are 4+4+4 = 12 different ways John can get 

from A to C via B. 

  

In travelling from P to Q there are: 

3=1x3x1 paths (along P to A to B to Q) 

6=1x3x2x1 paths (along Pto Cto D to E to Q) 

2 =1 x 2 paths (along P to F to Q) 

In total there are 3 + 6 + 2 = 11 paths 

' 
l 

| | 

    

The golfer has 3 possible drivers to use and so the first task 

can be carried out in 3 ways. 

The golfer has 4 possible tees to use and so the second task 

can be carried out in 4 ways. 

The golfer has 5 golf balls to use and so the third task can be 

carried out in 5 ways. 

Using the multiplication principle, there are a total of 3 x 4 x 

5 = 60 ways to take the first stroke. 

L T SR T B W e e T, 

Permutations 

A permutation is an arrangement in which both the items 

chosen and the order in which they are chosen matter. 

Thus if we pick three letters from the word PENCIL: 

PEN and EPN are different permutations but the same 

combination. 

The total number of ways of arranging n objects, taking r at a 

time is given by: 

We use the notation " 2 (read as "n-p-r") to denote r 

Notation: 

  

(n=r) 

For example, the total number of arrangements of 8 books on 

a bookshelf if only 5 are used is given by: 

1 1 

p= h =i=6720 
*(8-5) 3! 
  

  

We have 5 students to be arranged in a row with certain 

constraints. 

a The constraint is that we can only use 3 students 

at a time. In other words, we want the number of 

arrangements (permutations) of 5 objects taken 3 at a 

time.



  

Therefore: n=5,r=3, 

  
c 5! 120 

The number of arrangements is: ~ £ = =—=60 
(5-3) 2 

b This time we want the number of arrangements of 5 

boys taking all 5 at a time. Therefore: n =5, r =5, 

5! 120 
The number of arrangements is: * 2 =——=——=120 

(551 o 

  

Box method 

Problems like Example A.5.3 can be solved using a method 

known as “the box method”. In that particular example, part 

(a) can be considered as filling three boxes (with only one 

object per box) using 5 objects: 

Box 1 Box 2 Box 3 

T 
The first box can be filled in 5 different ways (as there are 5 

possibilities available). Therefore we ‘place 5” in box 1: 

Box 1 Box 2 Box 3 

C (L 
Now, as we have used up one of the objects (occupying box 1), 

we have 4 objects left that can be used to fill the second box. 

So, we ‘place 4’ in box 2: 

Box 1 Box 2 Box 3 

D 
At this stage we are left with three objects (as two of them 

have been used). This means that there are 3 possible ways 

in which the third box can be filled. So, we ‘place 3’ in box 3: 

Box 1 Box 2 Box 3 

This is equivalent to saying, that we can carry out the first 

task in 5 different ways, the second task in 4 different ways 

and the third task in 3 different ways. Therefore, using the 

multiplication principle we have that the total number of 

arrangements is 5 X 4 x 3 = 60 - the same answer as the 

permutations method. 

    

We have a situation where there are five positions to be filled: 

(Letter )( Letter J@umber)(Number)(Numbefl 

That is, the first position must be occupied by one of 26 

letters, similarly, the second position must be occupied by 

one of 26 letters. The first number must be made up of one 

of nine different digits (as zero must be excluded), whilst the 

other two positions have 10 digits that can be used. Therefore, 

using Rule 2, we have: 

  

Total number of arrangements =26x26x9x10x10 = 608 400. 

  

a Consider the five boxes: 

Box1 Box2 Box3 Box4 Box5 

i SRR N S 
Only the digits 4 and 5 can occupy the first box (so as to 

obtain a number greater than 40,000). So there are 2 ways to 

fill box 1: 

Box1 Box2 Box3 Box4 Box5 

2 ) O JC I ) 
Box 2 can now be filled using any of the remaining 5 digits. 

So, there are 5 ways of filling box 2: 

Box1 Box2 Box3 Box4 Box5 

2 s JC I ) 
We now have 4 digits left to be used. So, there are 4 ways of 

filling box 3: 

Box1 Box2 Box3 Box4 Box5 

2 JCs I+ JC ) 
Continuing in this manner we have: 

Box1 Box2 Box3 Box4 Box5 

(2 s I s 2 ) 
Then, using the multiplication principle we have: 

2x5x4x3x2 = 240 arrangements. 

Otherwise, we could have relied on permutations and 

obtained: 

2x° P,=2%120=240 arrangements.



&
S
P
 T 

T 

f 

b As in part a, only the digits 4 and 5 can occupy the first 

box. 

If repetition is allowed, then boxes 2 to 5 can each be filled 

using any of the 6 digits: 

Box1 Box2 Box3 Box4 Box5 

2 s e JCs ) s ) 
Using the multiplication principle there are: 

2x6X6x6x6 = 2592 arrangements. 

However, one of these arrangements will also include the 

number 40 000. Therefore, the number of 5 digit numbers 

greater than 40,000 (when repetition is allowed) is given by 

2592 - 1 =2591. 

  th= 60@(” 3)' 

n(n=1)(n=2)(n-3)! 
@W—GO 

n(n—=1)(n—2)(n-3)=60 

w=3n"+2n-60=0 

Thisisbestsolvedgraphically; 

n=>5   

    

The word ‘HIPPOPOTAMUS’ is made up of 12 letters, 

unfortunately, they are not all different! This means that, 

although we can swap the three Ps with each other, the word 

will remain the same. 

Now, the total number of times we can rearrange the Ps (and 

not alter the word) is 3! = 6 times (as there are three Ps). 

Therefore, if we ‘blindly’” use Rule 2, we will have increased 

the number of arrangements 6 fold. 

Therefore, we will need to divide the total number of ways of 

arranging 12 objects by 6. 

— - OUNTING 

| 
That s, 131' =79833600. 

However, we also have 2 Os, and so, the same argument holds. 

So that in fact, we now have a total of: 

| 
e 39916800 arrangements 
3Ix2! 

This example is a special case of permutations with repetitions: 

Rule: 

  

Exercise A.5.1 

L. A, B and C are three towns. There are 5 roads linking 

towns A and B and 3 roads linking towns B and C. 

How many different paths are there from town A to 

town C via town B? 

2. In how many ways can 5 letters be mailed if there are: 

a 2 mail boxes available? 

b 4 mail boxes available? 

3 There are 4 letters to be placed in 4 letter boxes. In how 

many ways can these letters be mailed if: 

a only one letter per box is allowed? 

b there are no restrictions on the number of 

letters per box? 

4. Consider the cubic polynomial: 

plx)=ax’ +bx* —5x+c 

a If the coefficients, a, b and ¢ come from the set 

{-3,-1, 1, 3}, find the number of possible cubics 

if no repetitions are allowed.
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b Find the number of cubics if the coefficients 

now come from {-3, -1, 0, 1, 3} (again without 

repetitions). 

The diagram shows the possible routes linking towns 

A, B,Cand D. 

B 

A person leaves town A for town C. How many 

different routes can be taken if the person is always 

heading towards town C? 

In how many different ways can Susan get dressed if 

she has 3 skirts, 5 blouses, 6 pairs of socks and 3 pairs 

of shoes to chose from? 

In how many different ways can 5 different books be 

arranged on a shelf? 

In how many ways can 8 different boxes be arranged 

taking 3 at a time? 

How many different signals can be formed using 3 

flags from 5 different flags? 

Three Italian, two chemistry and four physics books 

are to be arranged on a shelf. 

In how many ways can this be done if: 

a there are no restrictions? 

b the chemistry books must remain together? 

c the books must stay together by subject? 

1il. 

12. 

14. 

  

Find nif: " 2 =380. 

Five boys and six girls, which include a brother-sister 

pair, are to be arranged in a straight line. Find the 

number of possible arrangements if: 

a there are no restrictions. 

b the tallest must be at one end and the shortest at 

the other end. 

€ the brother and sister must be: i together ii 

separated. 

In how many ways can the letters of the word 

Mississippi be arranged? 

In how many ways can three yellow balls, three red 

balls and four orange balls be arranged in a row if the 

balls are identical in every way other than their colour? 

In a set of 8 letters, m of them are the same and the 

rest different. If there are 1680 possible arrangements 

of these 8 letters, how many of them are the same? 

Combinations 

On the other hand, combinations represent a counting 

process where the order has no importance. For example, the 

number of combinations of the letters A, B, C and D, if only 

two are taken at a time, can be enumerated as: 

AB, AC, AD, BC,BD, CD, 

That is, the combination of the letters A and B, whether 

written as AB or BA, is considered as being the same. 

Instead of combination the term selection is often used. 

The total number of ways of selecting n objects, taking r at a 

time is given by:



t 

  

Notation: 

We use the notation"C, (read as "n-c-r") or [ " ] to 
r 

7 
denote ————. 

(n—r)i! 

For example, in how many ways can 5 books be selected 

from 8 different books? In this instance, we are talking about 
selections and therefore, we are looking at combinations. 

Therefore we have, the selection of 8 books taking 5 at a time 

is equal to: 
! ! s )__ 8 _8 

5 (8—5)15! 315! 

Graphic calculators mostly have a "probability menu' which 

you should locate. 

  

  

6720 

56 

      

  

First we look at the number of ways we can select the women 

members: 

We have to select 3 from a possible 5, therefore, this can be 

done in °C, =10 ways. 

Similarly, the men can be selected in 'C, =6 ways. 

Using Rule 2, we have that the total number of possible 

committees =°C, x* C'=60 ways. 

NTING FRINCIPLES 

  

Case 1: Husband included 

    
   
   

   

6 men left 

Husband      
4 women left 

wife removed 

If the husband is included, the wife must be removed (so that 

she cannot be included). We then have to select 2 more men 

from the remaining 6 men and 2 women from the remaining 

4 women. 

This is done in *C, x"' €, =90 ways. 

Case 2: Wife included 

    
    

  

   

wife removed 

6 men left 

    4 women left]! 

If the wife is included, the husband must be removed. We 

then have to select 3 men from the remaining 6 men and 1 

woman from the remaining 4 women. 

This is done in: °C, x" C, =80 ways. 

Therefore there are a total of: 

°C,x"C,+°C,x* €, =90+80=170 possible committees.
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Exercise A.5.2 

In how many ways can 5 basketball players be selected 

from 12 players? 

A tennis club has 20 members. 

a In how many ways can a committee of 3 be 

selected. 

b In how many ways can this be done if the 

captain must be on the committee? 

In how many ways can 3 red balls, 4 blue balls and 5 

white balls be selected from 5 red balls, 5 blue balls 

and 7 white balls? 

In how many ways can 8 objects be divided into 2 

groups of 4 objects? 

A cricket training squad consists of 4 bowlers, 8 

batsmen, 2 wicket keepers and 4 fielders. 

From this squad a team of 11 players is to be selected. 

In how many ways can this be done if the team must 

consist of 3 bowlers, 5 batsmen, 1 wicket keeper and 2 

fielders? 

A class consists of 12 boys of whom 5 are prefects. How 

any committees of 8 can be formed if the committee is 

to have: 

a 3 prefects? 

b at least 3 prefects? 

In how many ways can 3 boys and 2 girls be arranged 

in a row if a selection is made from 6 boys and 5 girls? 

10. 

If[ ’31 ]:56 show that 7' =37 +21#—336=0. 

Hence find n. 

In how many ways can a jury of 12 be selected from 9 

men and 6 women so that there are at least 6 men and 

no more than 4 women on the jury. 

Showthat[ ”;1 )*{ ”;1 ]=(I171)ZA 

Hencefindflif;[ ”;H ]—[ i J:l() 

Exercise A.5.3 

1. 

4. 

Five different coloured flags can be run up a mast. 

a How many different signals can be produced if 

all five flags are used? 

b How many different signals can be produced if 

any number of flags is used? 

In how many different ways can 7 books be arranged 

in a row? 

In how many different ways can 3 boys and 4 girls be 

seated in a row? 

In how many ways can this be done if: 

a no two girls are sitting next to each other? 

b the ends are occupied by girls? 

In how many different ways can 7 books be arranged 

in a row if: 

a three specified books must be together? 

b two specified books must occupy the ends?



10. 

11. 

A school council consists of 12 members, 6 of whom 

are parents and 2 are students, the Principal and the 

remainder are teachers. The school captain and vice- 

captain must be on the council. If there are 10 parents 

and 8 teachers nominated for positions on the school 

council, how many different committees can there be? 

A committee of 5 men and 5 women is to be selected 

from 9 men and 8 women. 

a How many possible committees can be formed? 

b Amongst the 17 people, there is a married 

couple, If the couple cannot serve together, how 

many committees could there be? 

A sports team consists of 5 bowlers (or pitchers), 9 

batsmen and 2 keepers (or back-stops). 

How many different teams of 11 players can be chosen 

from the above squad if the team consists of: 

a 4 bowlers (pitchers), 6 batsmen and 1 keeper 

(back-stop)? 

b 6 batsmen (batters) and at least 1 keeper (back- 

stop)? 

Twenty people are to greet each other by shaking 

hands. How many handshakes are there? 

How many arrangements of the letters of the word 

“MARRIAGE” are possible? 

How many arrangements of the letters of the word 

“COMMISSION” are possible? 

A committee of 4 is to be selected from 7 men and 6 

women. In how many ways can this be done if: 

a there are no restrictions? 

b there must be an equal number of men and 

women on the committee? 

12. 

14. 

15. 

16. 

17. 

18. 

  

c there must be at least one member of each sex 

on the committee? 

Prove that: 

« (T H 
b ’”'P,:"}’,fl—rx”}{,, 

n+1 

r+l1 

A circle has n points on its circumference. How many 

chords joining pairs of points can be drawn? 

A circle has n points on its circumference. What is the 

maximum number of points of intersection of chords 

inside the circle? 

a Show that: 2” =2[ % J 
=\ 7 

b In how many ways can 8 boys be divided into 

two unequal sets? 

Whilst at the library, Patrick decides to select 5 books 

from a group of 10. In how many different ways can 

Patrick make the selection? 

A fish tank contains 5 gold-coloured tropical fish and 

8 black-coloured tropical fish. 

a In how many ways can five fish be selected? 

b If a total of 5 fish have been selected from the 

tank, how many of these contain two gold fish? 

In how many ways can 4 people be accommodated if 

there are 4 rooms available? 

 



  

19: 

20. 

21. 

22. 

23. 

24.     
26. 

10 

A car can hold 3 people in the front seat and 4 in the 

back seat. In how many ways can 7 people be seated in 

the car if John and Samantha must sit in the back seat 

and there is only one driver? 

In how many ways can six men and two boys be 

arranged in a row if: 

a the two boys are together? 

b the two boys are not together? 

c there are at least three men separating the boys? 

In how many ways can the letters of the word 

“TOGETHER” be arranged? In how many of these 

arrangements are all the vowels together? 

In how many ways can 4 women and 3 men be 

arranged in a row, if there are 8 women and 5 men to 

select from? 

In how many ways can 4 women and 3 men be arranged 

in a circle? In how many ways can this be done if the 

tallest woman and shortest man must be next to each 

other? 

In how many ways can 5 maths books, 4 physics books 

and 3 biology books be arranged on a shelf if subjects 

are kept together? 

How many even numbers of 4 digits can be formed 

using 5, 6, 7, 8 if: 

a no figure is repeated? 

b repetition is allowed? 

Five men and five women are to be seated around a 

circular table. In how many ways can this be done if 

the men and women alternate? 

27.  Aclassof20studentscontains 5 student representatives. 

A committee of 8 is to be formed. How many different 

committees can be formed if there are: 

a only 3 student representatives? 

b at least 3 student representatives? 

28.  How many possible juries of 12 can be selected from 

12 women and 8 men so that there are at least 5 men 

and not more than 7 women? 

29.  In how many ways can 6 people be seated around a 

table if 2 friends are always: 

a together? 

b separated? 

Binomial Theorem 

We have met the Binomial Theorem in the context of 

multiplying out brackets: 

(a+6)"= 

0 1 2 n 

where |: 7 i|="C, 
r 

There are several ways of calculating the binomial coefficients: 

Pascal's Triangle and combinatorial numbers being the most 

common. 

Can we extend the Binomial Theorem to cases where the 

index is not a positive whole number? 

The answer is 'yes', without using a different 'pattern’ and with 

some very useful consequences. 

 



  

If we replicate the pattern used in other binomial expansions, 

there are two aspects that we need to consider. 

1. Pattern of terms 

This means that one of the powers starts at 'n' and decreases by 

one with each term and the other begins at zero and increases 

by 1. As one of the terms is 1, the pattern of terms can be 

written with the power of 1 decreasing and the power of x 

increasing. Since 1 to any power is 1, we only need to worry 

about the powers of x: x, %, 2%, x",... 

2 Coefficients 

Since these are to be combinatorial numbers, it is usual to 

think of these as being expressible in this way: 

6! 6! 654321 65 
For example: C,=———=—=—"—"—=— 

(6—2)12! 412! 4321x21 21 

In this case, the numerator is a 'terminated factorial' - a 

factorial that does not run all the way down to one because of 

the cancellation of terms with those in the denominator. If we 

think in this way, the binomial coefficients become: 

wr _ H(n=1)(n=2)(n-3).321 _ 

O n(n=1)(n=2)(n—3)..321x0! 
e = n(n=1)(n-2)(n-3)..3.21 _ 

Y (m=1)(n=2)(#-3)..3.21x1! 

"c _n(n=1)(n=2)(n—3)..321 _n(n-1) 
  

  

2 (n=2)(n-3)..321x2! 21 

"c = n(n=1)(n=2)(n-3)..321 n(n-1)(n-2) 

T (n-3).321x30 31 
The terms in red are those that cancel. Notice that a pattern is 

beginning to emerge. It is a good idea to write out a few more 

terms for yourself just to check that it continues. 

We can now put these two features of the expansion together 
to get: 

7 n(n—1 n(n=1)(n-2 
(l+x)':1+nx+*( )x1+—( X )x’+ 

2! 3 

If n is a positive whole number, this series terminates at the 

moment when the numerator reaches the term: 

#(n—=1)(n—2)(n-3)...(n—n) which will be zero, as will all 
subsequent terms. We have a finite expansion of the type 

dealt with earlier. 

If, however, n is negative or fractional, we will miss this zero 
and the series will be infinite. 

This is the case with this example. 

The required series is: 

(14+x)" 

:1+H)x+(~1)((;1)—I)X_,+(—1)((71)—3 })((—1)—2)),“ 

(1) D) o CUEDES) s, 
2! 3 

=l-x+x'—x+.. 

As we have said, this sequence is infinite. Such series converge 

if [x| < 1 and diverge otherwise. 

Asafinal comment, the series we have generated is a geometric 

series with first term 1 and common ratio —x. Using the sum 

of such series: 

  

1 1 . . 
f o=t =—=(1+x) ' theoriginal expression. 

-7 1-(-x) l+x (L+) g ¥ 

  

Using a value of x = 0.2: 

(1+x)" =l—x+ =2 +.. 

(14+02)"=1-02+02-02"+... 

=1-0.2+0.04—-0.008+... 

The terms are getting smaller and the series is converging, but 

how many terms should we use to be sure that the answer is 

correct to 5 significant figures? It appears that the answer is 

in the region of 0.8 so we should continue until we get a term 

that is zero to 5 decimal places. It is a good idea to go on place 

further and then round to the required accuracy. 

(1 +().2)7l =1-0.2+0.04-0.008+0.0016—-0.00032+... 

...#0.000064 —0.0000128 +0.00000256 ... 

..0.000000512+... 

=0.833333248 

The answer can now be safely rounded to 0.83333 (5 s.f.). 

  1



  

Using: 

(1+x)"=l+m'+”(”_l), A 1(17-13)'(/7—2)):\+ 

with n =¥, 

/ =1 (/1)1 -2 

(1+x)'3=1+12,r+ 2(' )x-+ 2('2 )( 2 ),z + 

:14.%,1/_*__'1/2(712)'{:_’_ 1’2(_12)(*32’)/@{“ 

1 , 1 5 5 , 
=lt—x——x+—r ——x +— 

2 16 128 256 
In order to estimate the value of V1.1, the value of x = 0.1. 

1 1, s 1 . 5 
V100 =1+=(01)==(01) +—(0.1)' ~——(0.1)" +... 2( ) 8( ) 16( ) 128( ) 

=1+0.05—-0.00125+0.0000625—... 

=1.0488125 

=1.049 to 4 s.f. 

  

We could use n = -'/; and x = 0.21. 

However, a neater result is found by observing that 1.1> = 1.21 

and that since: 

1 1 1 

Nat e 
we can use n =-"/3and x = 0.1. 

. rl(n—l})!(fl—2)‘rj L 

    

(1+x)" =l+n,r+M,rl 

The required expansion is: 

(IH),Z,_,_H(%jfl[“i]((‘i)IJ . 

  

As we do not know how many terms to take, we can evaluate 

the series so far: 

2 2 5 , 40 
1+0.1) 7 =1-=(01)+=(0.1) ——x" +... (o =1-2(01) (017 -0 

=1-0.066666+0.00555555—0.0004938... 

=0.9383958 

Is this far enough? The only way of deciding this is to compute 

the next term: 

IS, 
X =+ 4 

4! 243 

With x = 0.1, this is: 

1 
+Q(o.1)‘ =0.0000453 

243 

If this is added to the total, we now get 0.93844106. As the 

next term is negative and smaller than the last one, we can 

now quote our answer: 

=0.9384 to 4 s.f. 
1 

Y121 

Checking this with a calculator: 

40-x° N 110-x% 0.93844 

243 

0.938436 

    

Using the expansion: 

1+.x) :1+/1,t‘+—”(”71)_r:+——”(”_])(”_2)_r3+ (1+x) 5 o



   

n = -3 and we replace x with (-x). 

(1+(=2) 

=1+n(—x)+   (n-1) 2 
Sg ey 

The expansion becomes: 

(1)) = (Y mr) e DD 
2! 

“,+fl(~3>~3}>ww 

fiwmw - 

:1+3x+(_3)2fif+(‘3)(;fix,xs+m 

L E3E08)6) 
4! 

=1+3x+647+10x" +154" 

Exercise A.5.4 

1. Expand (1+.x)” up to the term in x*. 

  

  

  

1 
a Use your expansion to estimate 5 

b Comment on the level of accuracy of your 

answer. 

2. Expand L up to the term in x°. 
Vit+x 

1 
a Use your expansion to estimate youT ey Jio1 
b Comment on the level of accuracy of your 

answer. 

3 Find the term in x° in the expansions of: 

a (1-x)" 

b 1-x 

6 (1+2I)-' 

d 1-2x 

OUNTING FRINCIPLES      

Expand, using the Binomial Theorem, up to the term 

in x°, the following: 

  

  

  

a 
V1+3x 

b (1-3x)" 

1 
c 

N+2x 

d 2V1+x 

: g 3 
Consider the expression 7 

(1-1) 
a Use the Binomial theorem to develop a series 

expansion. 

b Substitute x = 0.2 into the first seven terms of 

your expansion 

c Use your expansion to approximate   
09° 

Find the term in x* in the binomial expansion of 

41-2x . 

Consider the expression 4+x . 

a Write the expression in the form A(1+ Br) 

where A & B are constants. 

b Use your expression to find a series expansion 

for va+.x . 

c Hence find the square root of 4.1 correct to 5 

significant figures. 

1 

(1-5x)° 

a Find the first three terms in the Binomial 

Expansion of this expression. 

  Consider the expression 

b Find the coefficient of the term in x°. 

Your answer to part b suggests that the size of the 

terms might be growing and the series diverging even 

if |x| < 1. Us a value of x = 0.5 to answer the rest of this 

question. 

13



     

    

CHAPTER A5 

10. 

11. 

14 

€ Find the ratio of term 2 to term 1. Are the terms 

growing in size or decreasing? 

d Find the ratio of term 4 to term 3. Are the terms 

growing in size or decreasing? 

e Find the ratio of term 7 to term 6. Are the terms 

growing in size or decreasing? 

f Is this series a viable method of making 

numerical approximations. 

. - . i 1 
Find the first seven terms in the expansion of T 

Vitx 

1 
a Find the value of fi to the maximum 

accuracy permitted by your series. 

b Find the absolute error of your estimate from 

parta. 

c Find the percentage error of your estimate from 

parta. 

Find the coefficient of the term in x* in the binomial 

expansion of (1-2x)™ . 

Use a series method to find the value of V2 correct to 4 

significant figures. 

1 
Expand both V1—x and —5 as far as the terms 

  

  

i (1+x) 

Vi-x 
a Hence expand 5 

(1+x) Js 
; 0.9 

b Hence find an approximate value for T 

b Find the absolute error of your estimate from 

part b. 

¢ Find the percentage error of your estimate from 

partb. 

  

13.  Use Binomial Series to find values for the following, 

correct to 4 significant figures. 

a 105 

b V404 

1 

¢ 1P 

d 1.01° 

5 

€ {1.1 

£ 202 

Answers 
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ost of the calculations with fractions that you have 

learnt about in Middle School will likely have been 

additions and subtraction using common denominators. 

2 1 2x4 1x5 8 5 13 
o=t ——=—t—="0r 

5 4 5x4 4x5 20 20 20 

1 3 I1x2 3x3 2 9 11 
= Ty = 
6 4 6x2 4x3 12 12 12 

In the first case, the common denominator is the product 

of the two denominators. Whilst this will always work, it is 

not always the least common denominator, as the second 

example shows. 

The same technique can be applied to algebraic examples: 

2 3 2xx 3x(x—1) 

x-1 x (x-Dxx xx(x-1) 

_2x+3(x-1) 

T ox(x-1) 

_2x+3x-3 

T ox(x-1) 

_ 5x-3 

" x(x-1) 

This chapter will deal with reversing this process - splitting a 

single algebraic fractions into separate parts. 

  

These separate parts are known as partial fractions. 

It is not immediately obvious why one might want to do this. 

It is a technique that is used in calculus that enables us to 

increase the number of functions that we are able to integrate. 

" ARTIAL"TRACTIONS 

The technique depends on the type of fraction we are working 

on. 

Type 1: Degree of the numerator < degree of the 
denominator 

First case: There is no repeated root in the denominator. 

Example A.6.1 

Express 

fractions. 

(7_2—)1(;4—),4’6]12\{2,'—4} as two partial 

  

We will try to change the fraction to a sum of two fractions 

where the numerators are real numbers yet to be determined. 

1 A B 
— Y =——+——,x#2,~4 

(x=2)(x+4) x—2 x+4 

We want this to be an identity (true for all x values except 2 & 

—4) - hence the identity sign. We will, however, revert to the 

more common equality sign from here on. 

After rearranging the equation we get: 

1 A B 
—_———=———t——— ¥#2,~4 
(x=2)(x+4) x—-2 x+4 

Ax+4) B(x-2) 

(x=2)(x+4) (r+4)(xr-2) 

_A(x+4)+B(x-2) 

T (x-2)(x+4) 

15



1= A(x+4)+B(x-2) 

We factorise x out: 1=x(A+ B)+4A-25 . 

This could hold for any xeR\{2,-4}. We need the solution 

of these equations A + B=0and 4A - 2B=1. 

The solution of this system of equations is A=—,5= —% § | 
=
 

Therefore: 

L 
(x=2)(x+4) 

L1 il 
(x=2) 6 (x+4) 

T 1 
T6(x—2) 6(x+4) 

1 
==X 

6 
    

    

We can check that our calculations are correct by adding the 

two fractions. 

  

1 ax(x+4)  Ix(x-2) 

6(x+4) 6(xr—2)x(xr+4) 6(x+4)x(x-2) 
_(x+4)—(x-2) 
6(x—2)(x+4) 

6 
T 6(x—2)(x+4) 

1 

T (r-2)(x+4) 

  

  2x-5 _ 4 . B 

(r+2)(x—1) (x+2) (x-1) 
A(x—1) B(x+2) 

T2)r-1) (-1)(x+2) 
2x-5=A(x—-1)+B(x+2) 

=(A+B)x—A+28B 

A +B=2and -A +2B=-5 hassolution: A=3and B=-1. 

Therefore: _2x=5 3 1 
(x+2)(x=1) (x+2) (x-1) 

TR s ey s e B e el eyl 

  

16     

TR 
P —x—6 (x-3)(x+2) 

A B 
== 4+ — 
x=3 x42 

A(x+2)+B(x-3) 

(x=3)(x+2) 

1t follows that: 

1= A(x+2)+B(x—3)=1=Ax+2A4+ Br 38 

This gives the two equations: 

  

/‘1-%5’:(),2,‘1—35':l=>/‘I:l,E:—l 
5 5 

Therefore: 

! i . x#3,-2. 
P _x—6 5(x-3) 5(x+2) 

[T T A . e e N A A | 

Second case: There is repeated factor in the denominator: 

  

Examples of this type are handled by splitting the fraction 

into two as follows. 

X=5 A B 

(x+1)  x+1 (x+1) 
  

The best reason we can give for this is that it works! 

  x=5  Alx+1) & B 

(x+1)  (x+1)(x+1) (x+1) 

_Alx+1)+ B 

T (x+1) 

It follows that: x¥—5=A(x+1)+ 8 

=Ax+A+ B



|=A,A+B=-5=B=-6 

We have the solution: 

el o B 
(2417 x+1 (x+1) 

     

On this occasion we must use three partial fractions: 

307 +4x— 6 A B c 
    

  

et 3 
(x+2) (x+2) (x+2) (x+2) 

We proceed as before: 

3x°+4x-6_ A B < 
(x+2)  (x+2) (x+2) (x+2) 

3t +4x—6  A(x+2) B(x+2), C 
(x+2) (x+2)"  (x+2) (x+2) 

It follows that: 

327 +4x—6=A(x" +4x+4)+ Br+2B8+C 

= Axr’ +(4 A+ B)+4A+2B+C 

This leads to three equations: 

3=4 

4=4A+B= B=-8 
—6=4A+2B+C=C=- 

3x7+4x-6_ 3 8 2 
Therefore: W = m‘m_ m 

Third case: repeated and non-repeated roots in the 

denominator. 

  

- ARTIAL FRACTIONS    

x=5 B A B B C 

(x+1)(x=1) (x+1) (x+1) (x 1) 

A+ )(x =1+ B(x=1)+C(x+1)° 
(x+1)(x-1) 

(A+C)x +(B+2C)x+(-A-B+C) 

(x+1)'(x-1) 

      

This leads to three simultaneous equations: 

A+C=0..[1] 

B+2C=1..[2] 

—A-B+C=-5..[3] 

which are solved by linear combinations: 

A+C=0..[1] 

B+2C=1.[2] 

-A-B+C=-5.[3] 

[]+[2]+[3]4C=—4=C=- 

[1]:4=1 

[2]:B-2=1=8=3 

fore — X5 L, 3 1 Therefore: (x+1)1(x—l)~(x+l) (IH)Z (x-1) 

  

We have the partial fractions split: 

50-3 A4 B c 
    

=3 (x=1) (x=3) (==3F  (z-1) 
Proceeding as before: 

  

  

5¢-3  A(x=3)(x—-1)+B(x-1)+C(x-3) 

(x-3)(x-1) " (x=3)(x-1) 
_(A+C)x* +(-4A+ B—6C)x+3A— B+9C 

B (x=3)(x-1) 

The equations are: 

A+C=0..[1] 

—4A+B-6C =5..[2] 

34-B+9C=-3..[3]



  

[2]=4C+B-6C=5=B-2C=5= B=2C+5 

[3]=-3C-(2C+5)+9C=-3=4C-5=-3=C=05 

B=2C+5=B=6 

A=-C=A=-05 

Therefore: 

5x-3 _ —0.5 e m 6 05 

=3 (r-1) (#=3) (x=3) (-1 
(P e e R R e 1 = gl s SR § S 0 

  

Fourth case: irreducible (cannot be factorised) quadratic 

factor in the denominator. 

In this case, we must have a linear numerator. Just a real 

number will not work. 

  

The split must be: 

16 A Bx+C   

x(,‘rz+4)=;+ X +4 

Note in particular the linear numerator paired with the 
irreducible quadratic denominator. 

The solution proceeds: 

16 A Bx+C 
T .t = 
x(x + 4) X X t4 

  

A(x+4)+(Br+C)x 
x(xz+4) 

(A+B)x* +Cx+44 

x(,rz+4) 

A+B8=0,C=0,44=16 

A=4,B=-4,C=0 

16 4 Ax 
x(xl+4)7;_m 

You might like to see what happens if you try using a single 

number as the numerator of the second partial fraction. It 

will help you see why we adopt the above method. 

18   

As in the previous example, the correct choice of numerators 

is important. Note that the degree of the numerator is less 

than that of the denominator. 

3x'-4x A L BeHC 

(r=2)(x*-x+2) x-2 X' -x+2 

The solution proceeds as follows: 

A(x* - x+2)+(Br+C)(x-2) 
(x-2 (x x+2) ) 

(A4 B)x*+(-4-2B+C)x+24-2C 

- (x—2)(xz—x+2) 

3t —4x 

(x— 2)(xZ —x+ 2) 
  

This gives the equations: 

A+B=3..[1] 

—A-2B+C=-4..[2] 

24-2C=0..[3] 

A=1,B=2,C=1 

3x'—4x 1 2x+4] 
(x— 2)(x —x+2) 2 r-x+2 

(e O s B ey Ve Vg o 11 Vol o bl O 

so that: 

Type 2: if the degree of the numerator is equal to 

the degree of the denominator. 

The method just discussed will not work in this case. 

  

A necessary preliminary step is polynomial division. This 

works in a very similar way as division of numbers. If you 

are unfamiliar with this process, follow through this example 

first.



S 

. 2 Divide x° by x (=x?). 

=2 | ' —3x2—10x+24 Onlylook at the 
highest powers. 

. x? Multiply the dividend 

x=2 | x=3x7-10x+24 (x?) by the divisor 
x1-2x? (x-2) to get x*- 2x2. 

. = Subtract 

r=2 [ =3x7—10x+24 (F-3x7-(x*-2x7)=-x7) 
X3 2x? to get the remainder—x". 

2 Take care with signs! 

. xt 
Include the next column . S 2 _ 

x=2|x"-3x 1¢0x+ 24 to the right 

x?-2x? s » 
- 10x - “bring down’”. 

® - - 
,--z| 347 -10x+24 
! e ¢x Divide -x? by x (= -x). 

-x*-10x 

® - 
Ll o = lfx = Multiply the dividend 3_2x? 

- X 10x (-x) by the divisor 

—x24 2x (x-2) toget —x’+ 2x. 

‘ xr- x 

x=2 |x’—3x2—10x+24 Subtract 
x3-20% | (~x2-10x-(-x+2x) 

—x:— 10x =-12x) to get the 
* 2x remainder ~12x. 

-12x 

. x*- x 
3 2 

F-B|# -3 =10e+2 Include the next column 
o 

- ltx to the right 

cats Dy - “bring down”. 

-12x + 24 

. x¥- x-12 

x—2 lx“—3x2—10x+24 

-2x? | 
Xl 10x Divide -12x by x (= -12). 

x4+ 2x 

-12x + 24 

. x?- x-12 

x=2 |2 =3x"-10x+24 
x=2x? | 

-x?-10x 
-x’+ 2x 

-12x+24 
-12x+ 24 

Multiply the dividend 

(~12) by the divisor 

(x-2)toget —12x + 24. 

REPEAT the 4 processes. 

REPEAT these processes. 

  

. x2- x-12 

x=2 |x’~3x3~10x+z4 
x*=2x? | 

-x?-10x 
-x+ 2x 

-12x +24 
-12x + 24 

0 

Subtract 

(-12x+24-(-12x+24)=0) 

to get the remainder 0. 

In our present case, the division looks like this: 

  

    

1 

-1 2+ 

X -1 

2 

X+ 2 
From this it follows that: r, =1+— 

x =1 x —l 

The same result can be arrived at as follows: 

X+l 2 
z—=1+7_ 

=1 x =1 

x2+1_xl—1+2 
  

1= -1 

& =1 2 
  

-1 -1 

  =1+ 2 
x -1 

The second part of the expression can now be split into partial 

fractions using techniques already discussed. 

x4l 1 1 2T et 
x-1 xr=1 x+1 

Type 3: if the degree of the numerator is bigger 

than the degree of the denominator 

  

As with the previous type, it is necessary to split the fraction 

into polynomial parts and a fractional part that has a 

numerator of degree less than the denominator.



  

x =2 

x—x=2 |x’—3.rZ +1 
= 1-2x 

—2x7 421 +1 
—2x7+2x +4 

=3 

=32 o 

“‘,—szfpr . 3 
H=g=2 X =x=2 

‘ This result can also be arrived at: 

30+ ~ (xl—x—z)(xfz)—?: 

xi—x=2 r—x=2 

B (+? —,t’—Z)(,t'—Z)+ -3 

T x-x-2 P 
=3 

=f—2th— 
H =H—=2 

| We must now split the remainder term into partial fractions: 

- SR 
x—x=2 (x=2)(x+1) 

A B 
e 

x¥=2 F#l 

‘ This can now be solved as before: 

| -3 _Alx+1)+B(x-2) 

' (x=2)(x+1) (x=2)(x+1) 

-3=(A+B)x+A-28 

A+B=0..[1] 

A-28=-3.[2] 

[1]-[2]38=3=58=1 

[1JA+1=0=A4=-1 

-3 -1 1 
(r—2)xtl) 7-2 x4l 

    
The complete result is: 

=317 +1 -1 1 
—————=X=F +— 

X=2 x#l 

  

x—x=2 

We conclude with some miscellaneous examples. 

20   

This is a 'type one' example. 

    
1 A B 

x(x+1):; x+1 

A(x+1)+Bx 

ST () 
(A+B)x+ A 

- x(x+1) 

A+B=0..[1] 

A=1..[2] 

B==1 

  

x(x+1) & x+l 

  

This example requires division. 

2x -1 

x+3| 247 +5x-2 
207 +6x 

—x=2 
—x—3 

1 
  

This means that: 

which completes the question.



    

This example requires the correct split: 

x4l _ A BriC 
(F+1)(x-1) x-1 2’41 

The solution is: 

Bx+C 

2+ 

x+1 

(x7+ 1)(x-1) 

X+l A(x* +1)+(Br+C)(x-1) 

()1 (x+1)(x-1) 

_(4+B)x*+(-B+C)x+A-C 

C (@ +1)(x-1) 

  A 
—_—+ 
=1 

A+B8=0..[1] 

-B+C=1.[2] 

A-C=1..[3] 

[1]+[2]+[3]:24=2=4=1 

[1J1+8=0=8=-1 

[3J1-C=1=C=0 

x+1 1 =& o B 2 g A 
(F+1)(x-1) x-1 2741 

T T R LS IS i1, W i S RN Y| 

Exercise A.6.1 

L Express as partial fractions: 

S5a 

(x+2)(x-3) 

3x+1 

(x+4)(x=7) 

==13 

(x+1)(x—3) 
=3x—-5 

(2x+1)(x-3) 

7x+5 

(2x+3)(3x-1) 

Express as partial fractions: 

3z-1 

(x-1)’ 
  

—2x+10   

16x" +18x+8 

(2x+1) 

Express as partial fractions: 

207 +3x+4 

(x+2)(x*+2) 

A7 +3x+11 

(x+2)(x*+x+7) 

327 +5x+1 
(2x+1)(x2 +3x+1) 

X7 +3x+13 

4 (r2)(x'4+7) 

7x°+13x+10 

¢ (x+5)(x3 +5) 

Express as partial fractions: 

  
3x+1 

a 

x+1 

3x+x+6 

b 2242 

20— +11x -5 s X=X LAY 
X145 

21



CHAPTER A6 

  

  
  

2 —4x* +5x+1 

(x-1) 

256" -4t =2x+3 e B 
2x-1 

5 Express as partial fractions: 

x+1 

4 (a?+1)(x-1) 

‘ X b e 
(,t‘2 + 3)(,\': + 5) 

x’=3r-4 
é e 

‘ x =1 

‘ d 3,r:kl 

(x—l)(x"+x+ l) 

xi 

€ 2 
x —4 

Answers 
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Introduction 

omplex numbers are often § 

first encountered when § 

solving a quadratic equation of 

the type for which there are no 

real solutions, e.g. x>+1 =0 ] 

or x2+2x+5 = 0 (because for 

both equations the discriminant, 

A = b2—4dac, is 

However, the beginning' of 

negative). 

complex numbers is to be found 

in the work of Girolamo Cardano 

(1501-1576), who was resolving 

a problem which involved the solution to a reduced cubic 

equation of the form x3+ax = b,a>0,b>0. Although 

others later improved on the notation and the mechanics 

of complex algebra, it was the work found in his book, Ars 

magna, that led to the common usage of complex numbers 

found today. 

Notation and i = -1 

The set of complex numbers is denoted by: 

  

i
 

and 

  

The complex number, z, is ‘made up’ of two parts: 

‘iy’ The ‘x-termt’ is called the real part and the ‘y-term is the 

imaginary part i.e. the part attached to the ‘i, where = —1. 
It is important to note the following: 

  

  

I The complex number r+7y is a single number 

(even though there are ‘two parts, it is still a single 

value). 

1 See An Imaginary Tale, The Story of , by Paul ]. Nahim 

  

2 The real part of z, denoted by Re(z) is x. 

The imaginary part of z, denoted by /m(z) is y. 

This means that the complex number z can be written as: 

  

Notice that the imaginary part is not ‘iy” but simply ‘y’ 

Example A.7.1 

For each of the following complex numbers, state the real 

and imaginary parts of: 

a z2=2+3i b w=3-9i 

  

a We have that Re(z) = Re(2+3i) =2 and 

Im(z) = Im(2+3i) = 3. 

Therefore, the real part of z is 2 and the imaginary part of z 

is 3. 

b Similarly, Re(w) = Re(3 -9i) = 3 and 

Im(w) = Im(3-9i) = -9. 

That is, for w, the real part is 3 and the imaginary part is -9. 
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It is important to locate, 

and become familiar 
with, the Complex 

Number part of your 
calculator (TT). 

      

  

  

   

    

      

6: Convert to Polar k 
: Convert to Rectang 

If using Casio, press the Option key (OPTN) followed by F3 

- complex, 

  

    

We first need to determine what the real and imaginary parts 

of z = 2xi+y2—1 are. 

We have that /m(z) = Im[(2x)i+ (>~ 1)] = 2x. 

~Im(z) =8 2x =8ox =4, 

Similarly, Re(z) = Re[(2x)i+ (>~ 1)] = y2—1 

“Re(z) = 0)2-1=0&y = *1 

The algebra of complex 

numbers 

Working with ‘i’ 

Since we have that i = ~=1, then > = -1, meaning that 

B =2xi=-1xi=-i. 

Similarly, i* = iZ2xi2 = =1 x-1 = 1, etc. 

General results for expressions such as i can be determined. 

We leave this to the set of exercises at the end of this section. 

24   

    Operations 

For any two complex numbers z; = a+ib and z, = c+id, 
the following hold true: 

Equality: 

Two complex numbers are equal if and only if their real parts 

are equal and their imaginary parts are equal. 

Addition: 

The sum of two (or more) complex numbers is made up of the 

sum of their real parts plus the sum of their imaginary parts 

(multiplied by 7). 

Subtraction: 

  

The difference of two (or more) complex numbers is made up 

of the difference of their real parts plus the difference of their 

imaginary parts (multiplied by 7’). 

Multiplication: 

When multiplying two (or more) complex numbers, we 

complete the operation as we would with normal algebra. 

However, we use the fact that i2 = —1 when simplifying the 

result. 

Conjugate: 

The conjugate of z = x+iy, denoted by z or z* is the 

complex number z* = x—iy. Note that: 

  

That is, when a complex number is multiplied with its 

conjugate, the result is a real number. z=x + iy and z’ =x - iy 

are known as conjugate pairs.



(S 

e 

e 

1e 

Division: 

When dividing two complex numbers, we multiply 

the numerator and denominator by the conjugate of 

the denominator (this has the effect of ‘realizing’ the 

denominator). 

That is, 

  

Note: It is important to realise that these results are not 

meant to be memorised. Rather, you should work through 

the multiplication or division in question and then simplify 

the result. 

  

Recall: Two complex numbers are equal if and only if their 

corresponding real parts and imaginary parts are equal. 

So,z=wox+(y-2)i=4+iex=4andy-2 = 1. 

Thatis, z = w ifand onlyif x=4 and y = 3. 

  

As we are equating two complex numbers, we need to 

determine the simultaneous solution brought about by 

equating their real parts and imaginary parts: 

From (3 —2i)(x+iy) = 12— 5i we have 

3x+3yi—2xi—2pi2 = 12-5i 

© (3x+2y)+(3y—2x)i = 12-5i   

OMPLEX INUMBERS    

&3x+2y =12 - (1)and 3y—2x = -5 —(2) 

Solving simultaneously, we have: 

2x(1): 6x+4y = 24 -(3) 

3% (2): 9y—6x = —15 - (4) 

Adding, (3) + (4), we have: 13y = 9 

Therefore, y = —]93 . Then, substituting into (1) we have: 

9 138 46 x+ Z =12 = ——m ey = 2 3x 2><13 12 & 3x 13c>\ 3 

9 = = 2 
5 ) So, we have the solution pair, x = 3 5 

~ N + I I —
 W + ~ =
 T —
 | o S =
 

b 2z-3w=2(3+/)-3(1-2/) 

=(6-3)+(2/+67) 

=3+8/ 

c zw=(3+7)(1-27) 

=3—-67/+7—21 

=3-5/+2 

=5-5/ 

d w'=(1-27)(1-27) 

=1-27-2/+4:* 

=1-4/-4 

=-3-4/ 
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You should be able to perform such calculations both manually 

and using your calculator. Parts b & ¢ of the previous example 

are solved as follows (note that you must use the complex 

number version of '#, not the variable T'). 

  

  

        

  

  

     g 
IR T       

Example A.7.6 

Find the conjugate of: 

a z=2+6i b w=.Bi-1 

  

  

Example A.7.7 

Express the complex number - 4'. in the form 
utiv. X0 

  

1-47 1-47 1-5/ 
= X       

145/ 145/ 1-57 
_1-5/—47+20/" 
T 1-5/+5/—257" 

1-9/-20 
B 1+25 

_—19-9¢ 
26 
  

26 

  

  

19 9, 
26 26 

  

You may need to use the F<=D key (above 8) to get the answer 

as a fraction. 

      

Example A.7.8 

Ifz=x+iy,find: 

a z+z* b z-z* 

  

z+z*¥ = (x+iy)+(x—iy) = 2x = 2Re(z). 

Note then, that - 

z—z* = (x+iy)—(x—iy) = 2yi = 2Im(z)i 

Example A.7.9 

If z= cosB+isin@ and w = sino +icosa express zw 

in the form p+g¢i, where p,ge R. Hence find the 

maximum value of p2+4¢> . 

  

zw = (cosO +isin@)(sino + icoso) 

= cosOsino. + cosBcosoi + sin@sinati + sindcosoi? 

= cosBOsino + cosOcosou + sinBsinoi — sinBcoso 

= (cosOsina— sinBcosa) + (cosOcoso+ sinBsino)i 

= sin(o.—0) + cos(o—0)i 

With p = sin(o.—0) and ¢ = cos(o.—6)



BT 

  

we have p2 +¢2 = sin2(0.—0) + cos2(a.—0) = 1. 

6. 

As P2+ g% will always have a fixed value of 1, its maximum 

value is also 1. 

| i e P T e (b T 
7: 

Exercise A.7.1 

1. Find:a Re(z) b Im(z) cz* for each of the following. 

i z=2+2i ii z=-3+2i 

2. 
iii z=-5i+6 iv 2= 

v __:3T+i vi 2z=1-3i-z 

- 8. 

2. Ifz = 4—iand w = 3+2i, find in simplest form (i.e. 

expressed as u + iv ), the following. 

a z+w b z—-w ¢ 22 

d 2z-3w e *w f iw 

3 If z=2+i and w = —3+2i, find in simplest form 

(i.e. expressed as u + iv ), the following. 
9. 

a z+w b z-w ¢ iz? 

d 2-2w e zw f iw 

10. 

4. For the complex numbers z = | —i and w = 2i -3, 

express each of the following in the form u +iv. 

) z+ 
a B b r c = ] 

z z L 

4 22 e 2i ¢ 2 
w+3 w 

5. Simplify the following. 11. 

a (2+4i)(3-2i) b (1-i)3 

€+ d T 
1+2i £ (1 —i)i 

¢ i -i+2) 

  

  

  

  

ERS    

Given that z = 3+ /2i and w = %i,find: 
1 

a Re(w) b Im(zw) ¢ 

Find the real numbers x and y such that: 

a 2x+3i = 8—6yi 

b x+iy = (2+3i)? 

(x+iy)(=i) =5 

a Simplify i” for: 

i n=0,1,2,3,4,5 

ii n=-1,-2,-3,-4,-5 

Evaluate : 

i ;10 i 15 

iii {20 iv i 

Find the real numbers x and y, for which 

(x+yi)(5-2i) = - 18+ 15i. 

Show that for any complex numbers z = x+ iy and 

w = a+bi: 

a (z+w)* =z¥+w* b (z—-w)* = z*—w* 

c (zw)* = z*w* d (22 = (@*)P 

z zZ* . 
e (—j* = = f (z%)* ==z 

w w* 

a Prove that zw —Zw is purely imaginary or zero 

for all complex numbers z and w. 

b Prove that zw+Zw is real for all complex 
numbers © and w. 
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12. 

14. 

15. 

16. 

17 

‘ 18. 

28 
L 

N =1 

+1 
Given that w =   ,wherez = x+iy, 

O]
 

find the condition(s) under which: 

a wisreal b w is purely imaginary. 

20. 

a Find the real values of x and y, such that 

(x+iy)? = 8—6i. 

b Hence, determine ./8 —6i, expressing your 

answer in the form u+iv, where u and v are 

both real numbers and u > 0. Find N3 —4i 

, expressing your answer in the form u+iv, 

where u and v are both real numbers and u > 0. 

Simplify the following. 

a (1+03—(1-0)3 
21. 

b (AP0 

i3 P (a+i) 
(1-i)? 

22. 

Find the real values x and y for which: 

a (x—y)+4i =9+yi 

b (2x +3y) —x3i = 12— 64i. 

Find the complex number z given that: 

5z+2i = 5+2iz, 

giving your answer in the form a + ib, where @ and b 

are real. 
23. 

Find the complex number z which satisfies the 

equation z( 1 + fii) =1- fii. 

The complex number z satisfies the equation 

z2—j=2z-1.1fz=wu+iv find all real values of u 

and v. 

a Re(z2) + Im(22) 

b Re(:+%)+lm(:+%) 

a  Show that: 

CoLlti_ 
oo 

b Show that 

integer. 

if k is a positive 

Find the complex number(s) z = a+ bi, 

  

satisfying the equation 1 

Express the following in the form p +¢i, where p and 

q are real numbers. 

a (cos® + isin®)(cosol +isina) 

b (cos0 + isin®)(coso —isinoL) 

c (rlcose+irlsinfl)(/‘zcos(x+ir25in(x) 

d (x— cos® —isin®)(x— cosB + isin@) 

e (x+ sino + icoso)(x + sino — icosoL) 

For the complex number  defined as 

z = cos(0) +isin(0), show that: 

o ] t Il cos(20) +isin(20) 

o
 r Il cos(30) +isin(30) 

Assuming now that zk = cos(k®) +isin(k©), show 

that:



  

1 —z7 

C+i(s—1) = === 
1=z~ 

o 

whereC = 1+ cos(0) + cos(20) + ... + cos((n—1)6) 

and 

S = 1+sin(0) +sin(20) + ... + sin((n—1)0), 

n 
where 0<0<3. 

Given that (x+iy)? = 8+6i, find the values 

of xand y. Hence, find ~8 + 6. 

b If (2+3i)(3—4i) = p+gqi, find the value of 
P+q?, 

c If (x+iv)> = a+ib, find an expression for 

a? + b2 in terms of x and y. 

Extra questions 

  

The Argand Diagram 

Unlike real numbers (which can 

be described geometrically by the 

position they occupy on a one 

dimensional number line), complex 

numbers require the real and 

imaginary parts to be described. 

The geometrical representation best 

suited for this purpose would be two 

dimensional. Any complex number 

z = x+iy may be represented on 

  

an Argand Diagram, by using either 

L. the point P(x, y), or 

ogs =3 
2. the position vector OP 

That is, we make use of a plane that is similar to the standard 

Cartesian plane to represent the complex number z = x+iy. 

This means that the x-axis represents the Re(z) value and the 

y-axis represents the /m(z) value. 

    The complex plane has led to the Mandelbrot Set (heading 

picture by Binette228) and models of tree branching and other 

elaborate natural forms. 

  

With z = 1+3i, we have x = Re(z) = 1 and 

v = Im(z) = 3. Therefore, we may represent the 

complex number z = 1+3i by the point P(1,3) on 

the Argand diagram: 

o 

Similarly for parts b and ¢ we have: 

b Im(z) ) c Im(z2)} 
4 J I 1 

] o - 

P(42, 1) [ | 

111 “1P(0,-2) 

    

» Re(z)   

    

                          

Geometrical properties of complex numbers 

The modulus of z 

The modulus of a complex 

number z = x+iy is a 

measure of the length 

of z=x+iy and is 

denoted by |z|. That is, 

mod(z) = |]. 

The meodulus of z is also 

called the magnitude of 

z. We can determine the 

 



length by using Pythagoras’s theorem: 

(OP)? = x2+)2 

2O0P = yxi+y? 

The modulus of z is also written as r, i.e.r = || . 

The Argument of z 

  

The argument of a complex 

number z = x+ iy is a measure 

of the angle which z = x+iy 

makes with the positive Re(z) 

-axis and is denoted by arg(z) 

and sometimes by p/(z), which 

stands for the phaze of z If 

0 is this angle, we then write, 

0 = arg(z). 

) 
Notice the use of capital ‘A’ rather than lower case ‘a’. Using 

6 = Arg(z), implies that we are referring to the Principal 

argument value, that is, we have restricted the range in which 

the angle 0 lies. 

    

a  z=4+3in 2 =N@2+3)2=/25=5 

Notice that we only square the real and imaginary parts of the 

complex number. That is, we do not use 3i because this would 

give J(H)2+(30)2 = J16-9 = JT! 

b In the same way we have: 

+2i 22 = M2+ (2)2 = 45, 
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When finding the principal argument of a complex number, 

an Argand diagram can be used as an aid. This will always 

enable us to work with right-angled triangles. Then we 

can make use of the diagram to find the restrictions on the 
required angle, i.e. ~T<O<m, then® = Arg(z) . 

a We first represent z = | +i on an Argand diagram: 

From the triangle OPM, we have: 

PM _ 1 ang = M _ 1 
RS VAR 

.0 = Talf](l) 

=8 = g (or 45°) 

  

Therefore, the principal argument of z, is Arg(z) = 

=
1
3
 

b Again, we start by using an Argand diagram: 

Im(z) 
From the triangle OPM, we 

have: 

PM _ 2 
1 = - =2 ane = S = 

~o = Tu}fl(Z) 

=0 = 63°26" 

Therefore, 6 = 180 —63°26" = 116°34". 

  

So that (the principal argument) 4rg(z) = 116°34". 

c Notice that we only make use of 0. to help us determine 

0 [ie. oc+@ = m (or180°)] 

Im(z) 

=] 

From the triangle OPM, we have: 

oM 1 

sl = Ta/fl(«/i) 

=o = 60° 

Therefore, ® = 180 —60° = 120°. 

  
So that (the principal argument) 4rg(z) = ~120°.



  

Notice that because we are ‘moving’ in a clockwise direction, 

the angle is negative. 

Notice that in the last example, although Arg(z) = —120°, 

we could have written arg(z) = 180°+60° = 240° (using 

‘small’ ‘@’). 

S Nl P N = R e ek L] 

Using a calculator 

On TI models, remember to use Menu 2, 9 to access the 

complex number capabilities. 

ifx 1: Actions bm 

  
    

        

    

  

L52: Number |1: Convert to Decimal 

x=3: Algebra  |2: Approximate to Fraction 

fe94: Calculus |3: Factor 
|68 5: Probabilitv |4 gmmon Multiple 

1: Complex Conjugate Common Divisor 

2: Real Part 

3: Imaginary Part ools » 

4: Polar Angle 

5: Magnitude 

6: Convert to Polar 

7: Convert to Rectan 

      

      
a\ngle(2+i)   
Use run mode if using Casio. 

Press the Option key (OPTN) followed by F3 - complex, 

  

(dre)Redl 
       

  

{5 

0.463647609 
    

  

Arg (2+i) 

0O 

YT     
  

  

a First, we need to determine the complex number z + 4 

z+4 = (1+2i)+4 = 5+2i 

Then we have, |5 +2i| = J/25+4 = /29 

b First, we need to determine the complex number 

ztw: 

z+w=(1+27)+(x—7) 

(x+1)+7 

(x+1)+4] 

=y(x+1)"+1 

=V +2x+2 

Adding complex numbers - geometric 

representation 

The addition of two complex numbers z 

and z, = x, +iy, can be considered in the same way as 

the addition of two vectors. That is, if z; = x; + iy, and 

z, = x, + iy, are represented by directed line segments from 

the origin 0+ 0/ their sum, (x| +x5) + (v; +y,)i canalso be 

represented by a directed line segment from the origin 0+ 0. 

= x) Ty 

  

  

Re(z) 

eg.ifz) = 6+2iandz) = ~4+4i thenz, +z, = 2+6i 

Subtracting complex numbers - geometric 

representation 

Subtracting two complex numbers z; = x;+iy; and 

z, = x,+iy, can be considered in the same way as 

subtracting two vectors. That is, if z; = x;+iy; and 

z, = x5t iy, are represented by directed line segments from 

the origin 0+ 0i. Subtracting z, from z, ie z;—-z, we 
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CHAPTER AZ 

obtain (x; —x,)+ (¥, —»,)i which can also be represented 

by a directed line segment from the origin 0+ 0i. 

    

    

    

Im(z) 

Y= lzl 

z. /// N T — 2 s 
| N\ 

N 
| N 

_‘_ —_— 21*22 

| Re(z 
X5 Y + e(z) 

X=X, 

eg.ifz, = 2+6iand z, = —4+4i thenz —z, = 6+2i 

The similarities between complex numbers and vectors in two 

dimensions make much of the theory interchangeable. Often, 

complex numbers are represented by the same notation 

as used in vector theory. For example, if the point P on the 

Argand diagram represents the complex number z = 2+ 3/ 

then the vector OP = [2, 3] would represent the same point. 

However, at this stage we will concentrate on features that 

deal directly with the complex numbers field. 

Exercise A.7.2 
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1. Show the following complex numbers on an Argand 

diagram: 

a 2+i —6i 

c 4-3i 2(1-14) 

e “3(1-1i) (1+2i)2 

% a For the complex number z = 1 +1i, represent the 

following on an Argand diagram: 8. 

i zi ii 2i2 iii zi3 

iv zi 9 

b What is the geometrical effect of multiplying a 

complex number by i? 

10. 

i z* ii i )] -z 

Describe the geometrical significance of each of the 

operations in part b. 

If z; = 1+2i and 2z, = 1+i, show each of th 
following on an Argand diagram: 

  

1 
a z} b = & 212, 

2 

d 2z) -2, & 212y f :-l +Z; 

Find the modulus and argument of: 

a 1+.3i b 1-43i ¢ 1+ 421 

Consider the two complex numbers z = a+bi an 

w=—atbi. 

Find |2, |w], |zw] . 

Find: idrg(z+w) il Arg(z—w). 

Ifz = (x-3)+i(x+3),find:a s b{x|=6} 

Ifz =2+iand w = — 1 -1, verify the following. 

a |22 = zz* b lzw] = [z||wl 

c w3 = wf? d |z -+ w| < 2|+ wl 

e Arg(zw) = Arg(z)+Arg(w) 

What is the geometrical significance of part d? 

z   If w= +i and |z|=1 , find Re(w). 

Given that |w| = 5, find 

a [~3w| b [w| c [2iw] . 

If Arg(z) = 0, show that z is real and positive.



11. A complex number w is such that w is purely 

imaginary. 

Show that Arg(w) = * 

I
E
 

12. a Ifarg(z) = = and z = x+ iy, show that A/jy =x. 
A
 

b Findz if|z—1] = 1 and arg(z—i) = 0. 

13. a If the complex number z satisfies the equations: 

_n -1 arg(z+1) = i and arg(z—1) = 3 s 

show that z = %(1 + fii) % 

b If w and z are two complex numbers such that 

lz—=w| = |z+w|, 

3 
show that |arg(z) —arg(w)| = g or 7“ 

Extra questions 

  

Polar Form 

So far we have been dealing with complex numbers of the 

form z = x+iy, where x and y are real numbers. Such a 

representation of a complex number is known asarectangular 

representation. 
A Im(z) 

However, the position Pt x+iy 

of a complex number on (x. ) 

an Argand diagram has 

also been described by its 

magnitude (i.e. its modulus) 

and the angle which it makes 

with the positive Re(z) 

-axis. When we represent a 
complex number by making O 

use of its modulus and 
argument, we say that the complex number is in polar form. 

| 

| 
| v = rsin® 

| 

| 

  

l«—>»B 

X = rcosf   Re(z) 

To convert from the rectangular form to the polar form, 

we make the following observations: From triangle OBP, we 

have: 

BP . _BP _y e 
8 sin(0) = oF r:>) rsin(0) 

  

OB _ x 
2 cos(0) = oP = x = rcos(0) 

Therefore, we can rewrite the complex number z as follows: 

z = x+iy = rcos(0) +irsin(0) 

= r(cos®+isin®) - we say that z is in polar form. 

Often, we abbreviate the expression z = r(cos8 +isin8) 

to: 

z= r(cosbt+ising) = rcis(9) r 
- 
T 

c 

c is 54 

  

a When converting from rectangular to polar form, the 

angle 0 refers  Im(z) 

to the Principal 1|— . 

argument. 

It is advisable to draw 

a  diagram  when 

converting from rectangular to polar form. 

Step 1 tane—\B:}H—— Step2 =41 +(\/3)3 2 

  

Therefore, z= »/3 +i = 2(cosg+ isingj - 201‘.5'(2) 

b 

tanB—l =0= E Step 1 1 2 

/12+(|)2 _ 
Step2 » = 
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Letz' = fi('i-v(%[). Therefore, we have: 

z= fi[cos(%‘:) + isin(%)) (‘expanding’ cis-term) 

Il k%) 
= 1+ 

Euler Form 

A third form of writing complex numbers is known as the 

exponential (or Euler) form. This also utilises the modulus 

and argument of a complex number. This is based on the 

rather surprising relation: 

Thus, for example: 

Cartesian Form: 1 + i. 

Modulus = /2 and argument = & 
4 

Polar Form: ficfs% 

in 
Euler Form: \/2¢ * 

In the last chapter of this book, we will cover polynomial 

series and, in particular, these results: 

2 3 4 

  

2 X & & 
e =l+x+—+—+—+ 

20 3 4 

i 3 X:’v x7 

siny=x—— — 
33 3 7 

2 xra Xfi 

COSF =1 ———F——— 
!4 6l 

34 

Note that the 'odd function' sine consists of all the odd 

powers of x and the 'even function' cosine consists of all the 

even powers of x. 

These three series are connected: 

  

The red terms correspond to the series for cosx and the green 

terms correspond to the series for ixsinx. 

This suggests Euler's result: ¢” = cosx +/sinx . 

There is one case of this result (with x = 7r) that comes top of 

most lists of "The most satisfying formulas': 

=1 

This is because it encapsulates four of the most interesting 

numbers (e, i, mand —1) in a very brief statement. 

Exercise A.7.3 

1. Express each of the following complex numbers in 

polar form. 

a 1+i b =l*%i ¢ —-1-i 

2. Express each of the following complex numbers in 

polar form. 

a 2+2i b SB+ioc 4-4i 

d 3+4i e -2+4i f =2=3i 

B+ 143, 3- g St h 375 il 1 

3. Express each of the following complex numbers in 

Cartesian form. 

a Zcis(g) b 3L-is(g) 

c ficis(—gj d 5:-:'.;(37”) 

e —8(’1’.&'[—73—[] f %z‘is‘(%)



Simplify the following. 

12+ 22" 

[1—.A1 e 
c Arg(z) +Arg(z*) 

  

Ifz= ficis(%) and w = 1+ ./3i, 

find the following, giving your answer in the form 

utiv. 

a w¥ ) b z* c wz 

2 

alfz= x+iy,showthatz+% = 2Re(z). 

b If z = x + iy, show that: 

i EIE ii 2= | 

Ifz=1+iandw = —1+./3i,find: 

Il b [wl e [zw] 

Arg(z) e Arg(w) f Arg(zw) 

Use the laws of indices to express e” x¢” as a single 

term. 

Expand (cosA+7sind)X(cosB +7sinB) 

Hence prove that: 

a cos( A+ B)=cosAcosB—sinAsinB 

b sin( A+ B)=sinAcos B+ cosAsinB 

By considering (e"t )” prove that: 

(cosx+7sinx)" =cosnx +7sinzx . 

  

de Moivre’s Theorem 

We begin with an important result: 

When complex numbers are expressed in polar form, 

their product can be found by: 

1. Multiplying their moduli. 

2. Adding their arguments. 

Algebraically, this is: If z; = r cis(8) and z, = rycis(9), 

then z; Xz, = ryrycis(6+9). 

Graphically, this becomes: 

Im(z) 

Re(z) 
B   

  

The powers of a complex number are a special case of this 
property. 

Next, if z; = z, = z = rcis(8), we then have that: 

22 = zxz = recis(0) x reis(0) = r2cis(6+0). 

That is, 22 = r2¢is(20). 

and: 2> = zx22 = reis(8)x r2cis(20) = rcis(0+20). 

That is, z3 = r3cis(30). 

In general then, we have that z” = rcis(n@) . 

de Moivre’s Theorem states: 

Proof: (By mathematical induction) 

Let P(n) be the proposition that (rcis(0))" = r"cis(n9). 
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For n = 1, we have that 

L.H.S = (rcis(8))! = rcis(8) = rlcis(1 x0) = R.H.S 

Therefore, P(n) is true for n = 1. 

P(n) Assume now that is true for n =k, 

that is, (rcis(0))k = rkcis(k0). 

Then, for n = k + 1, we have 

(reis(8)F 1 = (reis(0))k(reis(0)) 

rkeis(k®)(rcis(0)) 

= vk lcis(kO)cis(0) 

rk+leis(kO +0) 

= rktleis((k+1)0) 

Therefore, we have that P(k + 1) istrue whenever P(k) istrue. 

Therefore, as P(1) is true, by the Principle of Mathematical 

Induction, P(n) istrue forn=1,2,3,... 

Note that the case n = 0 is the trivial case. 

Notice that de Moivre’s Theorem holds for all integral values 

of n, both positive and negative, i.e. ne ZU {0} as well as 

rational values of n, i.e. ne Q. 

Graphical properties of de Moivre’s Theorem 

Il For the complex number z = rcis(0), we have 

Lo == Geis@)! = Leis(-0) 

e lz7! = 7" = 

~
I
 and arg(z!) = 0. 

= 22 = (reis(0))2 = r2cis(20) 

o2cis(20) Im(z) 

        

rcis(e) 

20 
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Letz = J3+i. 

  

This means: 

r= |'fi+l‘{ = J(Jf3)2+12 =2 and B = Tan I[%) =T 
3 

Therefore, we have that z = /3 +i = 2““(2)' 

Using de Moivre’s Theorem, we have: 

(i) = 25Ci5(5n) = 3203(%") 

= 163+ 16i 

  

Letz=—-1+i, 

  

This means: 

r=l-1+i = J(-1)2+12 = /2 and 

= Tan (1) = T gre(z) = 3% 0 = Tan (I) 4..Alg(,_) 7 

Therefore, we have that z = — 1 +i = fiux[%)



  

Using de Moivre’s Theorem, we have: 

(-1 +iy* = (fi)’4¢‘i.v(4 X 377':) =   cis(—3m) 

W2 

(~1+0) =— 

B
 :;:(cos(sn)flsin(-sn)) = 

  

We first convert both numerator and denominator into polar 

form. 

1+i= ficis(:—:) [standard result] 

and 1-i = ficis(—:l—[).'.(l —i3 = (fi)%is(-%") 

Therefore, 

«/icis(r—[) 

ulj,-;a - MT(%“) h %u{(%‘)—(fiffl = yeis® 
  

1 | 
E + = & ScoST + S isin® 

  

a We first convert each term into its polar form: 

1+7/= fia’:(zj 
4 

s 5t 
1+ =(V2 61'5(—) (19 =(3) i 2 

= 4\/5:1'5(757”] 

It follows that: 

(g5 o) 
= 4\/§|:_ii| 

2 

=8 

b Using the previous results we have, 

A+Pa-9° = 4ficix(57")x4ficis(—57n) 

= 32Ci5(5—n . 5_7'() 
4 4 

= 32¢is(0) 

=32 

Notice that whenever we add or multiply the complex 

numbers rcis(0) and rcis(-0), a purely real complex 

number will always result. This can seen as follows: 

1. Adding 

reis(0) +reis(—0) = rlcis(0) +cis(—0)] 

= r[(cos® +isinB) + (cos(—0) +isin(-0))] 

7[(cosO +isinB) + (cosO — isinB)] 

= r[2cosB] 

2rcos6 

2. Multiplying 

reis(0) x reis(—0) = r2[cis(8) x cis(-0)] 

= r2[cis(6-0)] 

r2eis(0) 

2 

Il 

=¥ 

37



    
     

38 

QTN W 

Exercise A.7.4 

Express each of the following in the form x + iy 

a (1+0)3 b (—1+0)4 

¢ (2+2i)3 d (— B+ 

e (Jf3-1)° f (3-4i)3 

Express each of the following in the form x +iy. 

a(l+i)3 b (—1+i)* 

c(2+2i)3 d (~B+iy? 

e (W3- f (3-4i)3 

Express each of the following in the form x +iy . 

o (2en(5)) b (se(g)) 

(Bl @ (3 

ol )0 (a3 
Find each of the following, expressing your answer in 

the form x +iy. 

  

a (1 +i3@-20)* 

b (B+2(1-i)? 

(2+2.3i)° 
c e 

(i—-1)* 

d (V3+i*+ Bt 

. (3 +4i)* 

(3-4i)? 

£ (1+0)* 

(1-i)? 

Extra questions 

   
Prove that cis(0+2kn) = cis(0), for all 

integer values of k. 

Using part a, evaluate the following. 

i cis(37m) ii cis(—43m) 

i o{Zn) iii 2. 

Simplify the following. 

. f 3m 
a (‘I.Y(T[)(‘lj[ > ) 

b 201\'(%))(60}.?(%) 

o[ & 
'\/é( lb(sj 

- ficis(—’—[] 
2 

e (Y . - ) 
a Express l’ls(z) and z‘m‘[i) in the form x+iy. 

(I . , 
Hence, express L’l,\'(fi) in the form x +iy. 

b Use part a to find the exact value of: 

. T . e[ 1T ) e () 

Use De Moivre’s theorem to prove that: 

if z = reis(0) then (2)" = (z"). 

 



The nth roots of a Complex 

Number 
Definition The nth roots of the complex number x +iy are 

the solutions of the equation z” = x +iy. 

de Moivre's Theorem suggests a geometric approach. 

  

This question amounts to asking for all the solutions to: 

z2=-1or 2’ =cism. 

Im(z) 

" N 

Also, any solution must have an argument which, when 

multiplied by 3, will give . 

First locate -1 on the 

Argand Diagram: 

As a consequence of de 

Moivre's Theorem, any 

solution to this question 

must have a modulus of 1 

(1’=1). 

) . i3 
The most obvious answer is an argument of = 

V3 
Is cisfi :l+—i a cube root of -1?7 

3 2 2 

1 V3.)1 43, 3 
= —t—i || —+—i-= 

2 2 4 2 4 

1 B 1 B 
=| = — || =+ — 

2 2 2 

    

1.~1.E-14-d 

3 -1+1€e14'd bsL 
2 

_1)3 =1 

Geometrically, we have that the nth roots of a complex 

number are represented in an Argand diagram as the vertices 

of a regular polygon of # sides, inscribed in a circle of radius 

“/r, and spaced at intervals of 2T 2T from each other. 
n 

The steps involved in solving equations of the form 2 = x + iy 

(even for the case that y = 0) are: 

Step 1. Express x +iy in polar form, rcis(9) 

Step 2. Realise that reis(8) = rcis(0 +2km), where k is an 

integer, because every time you add another 27, you 

return to the same position. 

Step 3. Use de Moivre’s theorem: 

1 

[reis(0 +2km)]" = /'; ('i.x(w 
n 

z" = reis(0+2km) .z = 

Step 4. Use n values of k, usually start at k=0, 1,. .. and end 

at k = n-1. This will produce the n required solutions 
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Setting z¢ = 64 we have, 

20 = 64+ 0i = 64[cis(0)+ isin(0)] 

= 64cis(0) 

= 64cis(0+ 2km) 

sz = 64'/%5[22"] k=0,1,2345 

Therefore, we have z = 2(‘1?( 3k) k=0,1,23,4,5. 

So that, 

= 2¢is(0), 2:‘1&(3) 2us(23 ) 2cis(m), 2us(43 ) 2013(5375) 

T 
8i has a modulus of 8 and an argument of 5 

By de Moivre's Theorem, one these cube roots will have an 

argument of one third of the argument of 8i. The moduli of 

all the roots will be the cube root of 8 (= 2). 

The other two roots will be at the vertices of an equilateral 

triangle (triangle because we are looking for a cube root). 

  

Im(z) 

i 

N J3+i 

/2 V2 A | 
Re(z) 

Thatis, z = J/3+i orz = < 3 +iorz==2i. 

  

n o
 

We start by expressing 1+ /3 in its polar form: 

1453 = 2('is(13[). 

Then, set z* = 2c'is[g) = 2cis(§+2kfl:j = 2(‘1‘3( 
n:+6k7r) 

3 

So that,z = ficis[%f’”‘j‘k =0,1,2,3. 

-~ — 4 For k=0, z fius(lzj 

k=1,z =% 2cis(1%—26n) = ‘l/isis(—n); 
12 

(ot e 28) e ), 
k=3, z = 42cis (7[-#;87[) - ‘i/icis(]?—zn) 

Therefore, the four roots 

of 1+iJ3 lie on the 

circumference of a circle 

of radius 4/2 units and 

are evenly separated by 

an angle of 7. 

Again notice that the 
roots in this instance do 

not occur in conjugate 

pairs. 

  

  

Exercise A.7.5 

i Use the nth root method to solve the following: 

a 3=27 b 2 =27 

c 2 =-8 d = -16 

2. Find the fourth roots of -4 in the form x+iy and 

hence factorise z* + 4 into linear factors.



3 Find the square roots of: 

ai b3+4i ¢ -1+.3i. 

Represent these roots on an Argand diagram. 

4. Find the cube roots of: 

b —1+.30 ci a. I=i 

Represent these roots on an Argand diagram. 

5. Solve the following equations. 

a 4= 1+i 

b B=i 

e B+i=0 

d 2 =8-8J3 

€ 23 = 64i 

f 2= [3+i 

Represent these roots on an Argand diagram. 

6 a Find the cube root of unity. 

b Hence, show that if w? =1, then 
T+w+w?2=0. 

7. Three points, of which 1+ i./3 is one point, lie on the 

circumference of a circle of radius 2 units and centre 

at the origin. If these three points form the vertices of 

an equilateral triangle, find the other two points. 

Extra questions 

    

Polynomials 

his section will look at polynomials with real coefficients 

in which the variable may take complex values. To 

emphasise this, the variable is generally labelled z (rather 

than x). 

P(z) = 22 + 3z - 4 is an example of a complex polynomial 

with real coefficients. 

P(z) =22+ 3iz - 4 isan example of a complex polynomial with 

a complex coefficient (shown in green). Such polynomials are 

not included in this course. 

Arising from such polynomials are equations with complex 

solutions. Our cover shows a 'fractal’ - a form that mimics 

many natural objects. Solving many problems in the natural 

sciences involves complex numbers. Even though they may 

be 'imaginary' (a term many dispute), complex numbers 

figure in the solution of 'real problems. 

Quadratic equations 

We start this section by looking at equations of the form 

ax2+ bx + ¢ = 0 where the discriminant, A = b2~ 4ac<0. 
Such equations will produce complex solutions. 

  

We start the same way we would when dealing with any 

quadratic expression: 

22 42z42= (z2 +2z +1)+1 (complete the square) 

=(z+1)2+1 

Il (z+1)2-i2 (difference of two squares) 

(z+1+i)(z+1-7) 

To solve z° +2z+2=0, we have: 

(z+1+i)(z+1=-i)=0z=-1-iorz=-1+i. 

Therefore, the two complex solutions are z = -1 - i and 

z=-1+ i. Notice that the solutions are a conjugate pair. 
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Rather than factorizing the equation, we will use the quadratic 

formula. 

P43245 = Qe = Z3E432-4x1x5 
2x1 

_ -3+ 
2 

_ —3+J10i 
2 

Therefore, the two complex solutions are 

Lo 3.3 S 
2. 2 7 2 2 

Again, notice the conjugate pair that make up the solution. 

Quadratics also come in a ‘hidden form. For example, the 

equation z0+ 423~ 5 = 0 can be considered to be a ‘hidden 

forn’ i.e. letting w = z3 we have w? +4w—5 = 0. And so 
we can then solve the quadratic in w. We could then obtain 

solutions for z. 

  

2 Let w =22 so that the equation z*+4z2-5=0 is 
transformed into the quadratic w? +4w -5 = 0. 

Then, we have w2 +4w—5 = 0 (w+5)(w—1) = 0 

& (22+5)(22-1) = 0 

& (2= 5z + iz 1)(z+1) =0 

Therefore, we have that z = ./5i or z = —/5i orz = | or 

z=-1. 

That is, we have four solutions, two real and two complex 

(again, the complex solutions are conjugate pairs). 

‘b
 

|
 

N
 

l 

Exercise A.7.6 

1. Factorise the following over the complex number field. 

a x2—6x+10 b x2+4x+13 

c x2-2x+2 d ZHdzts 

e z2-3z+4 f 22+ 10z + 30 

g 4w+ 4w+ 17 h 3w —6w+6 

i —2w2+8w—11 

2. Solve the following over the complex number field. 

a 22+4z+48 =0 

b 22-z+3 =10 

c 322-3z+1=0 

d 2w2+5w+4 =0 

e w2+ 10w+29 = 0 

3 Solve the following over the complex number field. 

a z4-322-4 =0 

b wh—8w2-9 =0 

c z4~522-36 = 0 

4. Factorise the following over the complex number field. 

a z2+25 b 22 +49 

c 22 +4z+5 d 2+6z+11 

e z4+272-8 f #_z2-6 

Polynomial equations (of order > 3) 

We now look at some of the more general polynomial 

equations that provide a combination of real and imaginary 

roots and factors. The important thing to remember is that 

the laws for real polynomials hold equally well for complex 

polynomials.



A polynomial, P(z) of degree n in one variable is an 

expression of the form 

anz" ta,_ ]z” =L tajzta, 

If the coefficients, a,, a,, _,, ..., a,, a, arereal, the polynomial 
is a polynomial over the real number field, while if they 

are complex numbers, the polynomial is a polynomial 
over the complex field. We shall, however, concentrate on 

polynomials over the real field. 

We state some standard results: 

Remainder Theorem 

If a polynomial P(x) is divided by a linear polynomial 
(x —a), the remainder is P(a) . 

Factor Theorem 

If, when a polynomial P(x) is divided by a linear 

polynomial (x —a), the remainder P(a) is zero, then 

(x—a) isafactor of P(x). 

Fundamental Theorem of Algebra 

Every polynomial equation of the form P(z) = 0, 
ze€ C,of degree n € @* has at least one complex root. 

This theorem is the basis for the next important result: 

A polynomial P,(z), z€ C, of degree n €@", can be 
expressed as the product of n linear factors and hence, 

produce exactly n solutions to the equation P, (z) = 0. 

We have already observed, in previous examples, the 

occurrence of conjugate pairs when solving quadratics with 

real coeflicients. We now state another result. 

Conjugate Root Theorem (C.R.T) 

The complex roots of a polynomial equation with real 

coefficients occur in conjugate pairs. 

  

Grouping like terms, we have: 

23-322442z-12 = 22(z-3) +4(z-3) = (22 +4)(z-3) 

OMPLEX NUMBERS 

i€ 23-322+4z-12 = (z—2i)(z+2i)(z—3) 

Andso,z3-322+4z-12 = 0 (z—2i)(z+2i)(z=3) = 0 

Therefore, we have that z = 2iorz = —2iorz = 3. 

We observe that two of the roots are conjugate pairs, and when 
we look at the polynomial, we see that all of the coefficients 

are real (as expected from the C.R.T). 

  

As all of the coefficients of the polynomial are real, it means 

that the C.R.T applies. That is, given that z = 1—i is a root, 

so too then,is z = 1+i. 

Therefore, we have two factors, namely, z— 1 + i and z— 1 . 

This means that (z—1+i)(z—1-i) = z22—-2z+2 isalso a 

factor. 

As in the last example, we can factorise by inspection: 

223722+ 10z—6 = (az+b)(z2-2z+2) 

That is, knowing that we are looking for a cubic, and given 

that we already have a quadratic factor, we are left with a linear 

factor, which is (az + b) . Then, comparing the coefficients of 

the 23 term and the constant term we have that: 

a=2and2b = -6&b=-3. 

That is, 223 - 722+ 10z—6 = (2z—-3)(z2-2z+2) 

Therefore, the roots are 1 —i, | +i. % 
|
 

r 

  

Given that z— 1+ is a factor of P(z) = z23+222 -6z +k, 

then, by the factor theorem we must have that P(1—i) = 0. 
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    CHAPTER A7 

So, (1-i)3+2(1—-i)2-6(1—i)+k=0&-8+k=10 

k=18 

Calculators are useful in situations that involve simple 

evaluation of complex numbers. 

B 
(1—i)3+2(1—i)2—6(1—i)8 

  

  

   
— 

o e e el T S R 

  

Let P(z) = z3~4z2+9z-10. Using trial and error (or at 

least factors of 10), we have: 

P(l) =1-4+9-10 = -4 ~.(z—1) is not a factor. 

P(2) = 8-16+18-10 = 0= (z—2) isa factor. 

Therefore, P(z) = (z—2)(az2+bz+c). 

Comparing coeflicients of the leading term and constant term 

we have: 

a=1land-2¢c=-10c=5 

Therefore, P(z) = (z—2)(z2+ bz +5). 

Then, comparing the coefficient of the z> term, we have that 

b-2=-4:b=-2. 

So, P(z) = (z—2)(z2-2z+5) = (z-2)[(z2-2z+1)+4] 
(completing the square) 

= (z-2)(z-1)2+4] 

= (z=-2)(z=1+2i)(z—1-2i) 

Therefore, P(z) = 0 & (z—-2)(z— 1 +2i)(z—1-2i) = 0 

Andso,z=2o0rz=1-2iorz=1+2i. 
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We could have used long or synthetic division to factorize 

P(z) tothestage P(z) = (z— 1)(z2—3z+ 10) . Both methods 

are equally valid. 

Also, rather than using trial and error you could use your 

graphics calculator to help find a first real factor. 

  

  

£1()=x>-4 x2+9-x-10 

-7.42     
  

Exercise A.7.7 

1. Factorize the following over the complex number field 

a B +2224+242 b 23-922+2-9 

c 23-222+2:-4 

2 Factorise the following over the complex number field 

a w3+ 2w—12 b 23-522+49z-5 

€ B+z2-2 d x4 —3x2-4 

e w3 —2w+4 f 24— 625 

3 Solve each of the following over the complex numbe: 

field. 

a 23722 +31z-25 = 0 

b 23822 +252-26 = 0 

c z4-323-2:2+10z-12 = 0 

d 2w3+3w2+2w-2 =0 

e 6z4—1123+22+33z-45 = 0



10. 

1. 

12, 

a 223 —22+42z-1 b 

f 23+ 722+ 16z+10 = 0 

Given that %(— 1+ ./3i) isaroot of: 

323422242z 1 = 0, find all other roots. 

Given that (z— 1 —2i) is a factor of 2z —3z2+8z+5 

solve the equation 2z3-3z>+8z+5 = 0 over the 
complex number field. 

Given that P(2-3i) = 0, find all three linear factors 

of 23 -722+252-39. 

Find all complex numbers, z such that 

z4-23+6z2-z+15 = 0 andz = 1 +2/ isasolution 
to the equation. 

Factorise the following. 

b = + N 
9] | ro
 

Given that 2 i isarootof z3 + az2 +z +5 = 0 where 

a is a real number, find all the roots to this equation. 

Given that 2+ 3/ isa root of z3 + az2 + b = 0, where 

a and b are real numbers, find all the roots of this 

equation. 

Given that 2—/ is a root of 223 -9z2+ 14z-5 = 0, 
find the other roots. 

Given that 4 is a zero of: 

P(z) = 23 +az2+33z-34, 

find a and hence factorise P(z). 

13. 

14. 

15. 

16. 

17 

18. 

19. 

OMPLEX INUMBERS    
Given that z-2 and z—1-i are factors of 

P(z) = z3—az?+ 6z + b, factorise P(z). 

Solve the following over the real number field. 

a 264+723-8 =0 

b 26-9z3+8 =0 

Write down an equation of the lowest possible degree 

with real coefficients such that its roots are: 

4 3,2—i 

b 2,1,1+i 

c 1-.3i,3 

d 1+ 2,2+ 3i 

Verify that z = — 1+ ./3i is a root of the equation 

z%-422-16z-16 = 0 and hence find the other 
roots. 

Given that z=a+ib is a root of 

z4-z3-622+11z+5 = 0 and Re(z) = 2, solve the 
equation completely. 

If z7 4z = 2cos(n0) show that: 

5z4-23-622-z+5 = 0= 10c0s26 — cos® — 8 =0. 

Show that cos50 = 16c0s’ —20cos 0 + 5cos@ ,and 

hence show that the roots of x(16x%—20x2+5) = 0 

are 0, cos(fl) cos(z—n), 005(7—71:), cos(g—n). 
10 10 10 10 
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Fractals 

Our cover picture shows a part of a computer generated 

fractal. 

Fractals are defined as shapes that look the same at whatever 

magnification we look at them. 

This means that most geometric shapes are not fractal. One 

that is, is the straight line. This is straight however much we 

magnify it. By contrast, the closer welook at the circumference 

of a circle, the less curved it appears. 

The interest in fractals is that many natural features (ferns, 

clouds, coastlines etc.) have fractal properties. 

Until the advent of computers, it seemed that fractals were 

to be confined to natural forms. However, an IBM computer 

expert, Benoit Mandelbrot, realised in the 1970s that realistic 

landscapes could be created by algorithms using repetitive 

calculations and comparatively simple rules. 

Today, when we watch an animated film, it is highly likely 

that the clouds, forests, mountains etc. we see are created by a 

computer using fractal mathematics. 

Mandelbrot's early investigations were based on complex 

numbers. A complex number ¢ is a member of the Mandelbrot 

Set if: 

¢,zeC with z, = 0 and the iterative scheme z, 

leads to a sequence of complex numbers whose moduli do 

not tend to infinity. 

=zl +c el 

For example: 

If ¢ = 0.1, the sequence is: 

z,=2,+017=0"+0.1/=0.1/ 

2,= 2} +01/=(017) +01/=-001+0.1/ 

2,= 224017 =(=001+0.17)* + 0.1/ =—0.0099+0.098/ 

A longer list of the sequence (rounded to 5 decimal places) is : 
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0 0.00000 0.00000 0.00000 

1 0.00000 0.10000 0.10000 

2 -0.01000 0.10000 0.10050 

3 -0.00990 0.09800 0.09850 

4 -0.00951 0.09806 0.09852 

5 -0.00953 0.09814 0.09860 

6 -0.00954 0.09813 0.09859             
A calculator implementation of this is 

illustrated in this video clip: 

  

For this value, the modulus of successive iterates settles down 

to a small number (~0.09859 ). Thus 0.1i is a member of the 

Mandelbrot set. 

By contrast, if you use ¢ = 1 + 2i, you should find that the 

iterates rapidly become huge. 1 + 2i is not a member of the 

Mandelbrot set. It would seem that the cut-off between the 

two (when shown on an Argand Diagram) should be a neat 

circle of radius 1. However, it is not! 

As a postscript, the later work of American artist Jackson 

Pollock has many fractal qualities. Pollock often worked with 

his canvas on the floor. He then used big brushes to spatter 

paint onto it. 

At first sight, the results look chaotic. Many people, after a 

longer look, begin to see natural forms such as forests and 

find his images restful. 

Surprisingly, forgers have found it very difficult to paint 

successful copies of Pollock's work. 

Answers 

 



  

Further Methods of Proof 

n the SL book, we introduced some of the most common 

Imethods of proof. We also discussed some techniques for 

choosing appropriate methods of proof. However, some of 

the great proofs of mathematics have been 'mould breakers'. 

Mathematicians use terms such as 'elegant' and, occasionally, 

'beautiful' to describe such proofs. 

For example, we revisit one of the proofs in that section, 

question 9 from Exercise A.8.3: 

Prove that there exist irrational numbers A & B such that A" 

is rational. 

This statement is very far from obviously true. 

B ; . . . V2 
This can be answered in the affirmative by considering N 

This is either rational or irrational. 

If it is rational, we have our proof. 

If it is irrational consider (\/E/) = (\/5) =2 and the result 

is proved. 

Note that we still do not have an example of A & B such that 

AP is rational. However, we have achieved the required result! 

As a second example, consider the argument presented in this 

video as a proof that there are only five regular polyhedra, the 

so called Platonic Solids. 

If this fits any mould of proof, it is 

probably Proof by Exhaustion. 

  

Proof by Contradiction 

This method works by assuming that the proposition is false 

and then proving that this assumption leads to a contradiction. 

The number 2 greatly interested classical Greek 

mathematicians who were unable to find a number that, 

when it was squared, gave exactly 2. 

Modern students are often fooled into thinking that their 

calculators give an exact square root for 2 as when 2 is entered 

and the square root button is pressed, a result (depending on 

the model of calculator) of 1.414213562 is produced. When 

this is squared, exactly 2 results — but not because we have 

an exact square root. It results from the way in which the 

calculator is designed to calculate with more figures than it 

actually displays. 

2 141421 | 

2 2.‘\ 

  

  

(1.4142135623731) 

The first answer is stored to more figures than are shown, 
the result is rounded and then displayed. The same is true 

of the second result which only rounds to 2. Try squaring 

1.414213562, the answer is not 2. 

The theorem we shall prove is that there is no fraction that 

when squared gives 2. This also implies that there is no 

terminating or recurring decimal that, when squared, gives 

exactly 2, but this further theorem requires more argument. 

The method begins by assuming that there is a fraction 7/, 

(p and q are integers) which has been cancelled to its lowest 

terms, such that ”/‘I =+2. From the assumption, the argument 

proceeds: 
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2 5 
22— :&2 =2 = p? =2¢%= p? iseven =p is even 
9 

As with most mathematical proofs, we have used simple 

axioms and theorems of arithmetic. The most complex 

theorem used is that if p? is even, then p is even. Can you 
prove this? 

The main proof continues with the deduction that if p is even 

there must be another integer, , that is half p. 

p =2r=p?=4r2=2q% = 4,2 

= g2 = 2r2= g2 is even = q is even 

We now have our contradiction as we assumed that 7/, was in 

its lowest terms so p and g cannot both be even. This proves 

the result, because we have a contradiction. 

This theorem is a very strong statement of impossibility. 

There are very few other areas of knowledge in which we 

can make similar statements. We may be virtually certain 

that we will never travel faster than the speed of light but it 

would be a brave physicist who would state with certainty 

that it is impossible. Other methods of proof include proof by 

induction which is mainly used to prove theorems involving 

sequences of statements. 

Whilst on the subject of proof, it is worth noting that it is 

much easier to disprove a statement than to prove it. When 

we succeed in disproving a statement, we have succeeded in 

proving its negation or reverse. To disprove a statement, all 

we need is a single example of a case in which the theorem 

does not hold. Such a case is known as a counter-example. 

The theorem ‘all prime numbers are odd’ is false. This can be 

established by noting that 2 is an even prime and, therefore, 

is the only counter-example we need to give. By this method 

we have proved the theorem that ‘not every prime number is 

odd’ 

This is another example of the way in which pure 

mathematicians think in a slightly different way from other 

disciplines. Zoo-keepers (and indeed the rest of us) may be 

happy with the statement that “all giraffes have long necks” 

and would not be very impressed with a pure mathematician 

who said that the statement was false because there was one 

giraffe (with a birth defect) who has a very short neck. This 

goes back to the slightly different standards of proof that are 

required in mathematics. 

Counter-examples and proofs in mathematics may be difficult 
to find. 

Consider the theorem that every odd positive integer is the 

sum of a prime number and twice the square of an integer. 
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Examples of this theorem that do work are: 

5=3+2x12,15 = 13+2x12,35 = 17+2x 32, 

The theorem remains true for a very large number of cases 

and we do not arrive at a counter-example until 5777. 

Anothersimilar'theorem'isknownas the Goldbach Conjecture. 

Christian Goldbach (1690-1764) stated that every even 

number larger than 2 can be written as the sum of two primes. 
For example, 4 = 2+2,10 = 3+7,48 = 19+29 etc. 

No-one has ever found a counter-example to this simple 

conjecture and yet no accepted proof has ever been produced, 

despite the fact that the conjecture is not exactly recent! 

Finally, whilst considering proof, it would be a mistake to 

think that mathematics is a complete set of truths that has 

nothing which needs to be added. We have already seen 

that there are unproved theorems that we suspect to be true. 

It is also the case that new branches of mathematics are 

emerging with a fair degree of regularity. During this course 

you will study linear programming which was developed 

in the 1940s to help solve the problems associated with the 

distribution of limited resources. Recently, both pure and 

applied mathematics have been enriched by the development 

of 'Chaos Theory'. This has produced items of beauty such 

as the Mandelbrot set (see Chapter A7) and insights into the 

workings of nature. It seems, for example, that the results 

of Chaos Theory indicate that accurate long-term weather 

forecasts will never be possible (Mandelbrot). 

The future shapes of these clouds is likely to be forever beyond 

the powers of mathematics. 

 



Exercise A.8.1 
™ 

10. 

11, 

12. 

13. 

14. 

15, 

Prove that if #€Z and @’—2a+7 is even the a is 

odd. 

Prove that V6 is irrational. 

Prove that there are no integers a and b for which 

2la+30b=1. 

If @ and b are positive real numbers, then a + b < 2ab. 

Prove that /2 is irrational. 

Prove that # €Z is odd « a’ is odd. 

Prove that there is no largest even integer. 

Prove that there do not exist integers m and n such 

that 14m + 21n = 100. 

Prove that triangle ABC can have no more than one 

right angle. 

Prove that if a is a rational number and b is an irrational 

number, then a + b is an irrational number. 

Prove that there are no positive integer solutions to the 

equation x* — y* = 10. 

Prove that there is no smallest positive rational 

number. 

Prove that no odd integer can be expressed as the sum 

of three even integers. 

Prove that a regular polyhedron cannot have hexagonal 

faces. 

A, B & C are centres of the three circles. Prove that, 

irrespective of the sizes of the two small circles, the 

perimeter of AABC is constant. 

</ 

Mathematical Induction 

Induction is an indirect method of proof which is used in 

cases where a direct method is either not possible or not 

convenient. It involves the derivation of a general rule from 

one or more particular cases, i.e. the general rule is induced. 

This is the opposite to deduction, where you use the general 

rule to provide detail about a particular case. For example, 

we know that 60 is divisible by 1, 2, 3, 4, 5 and 6, but does it 

follow that 60 is divisible by all positive integers? 

  

This can be checked, as the positive odd integers form an 

arithmetic progression (see Core A.2) with a = 1 and d = 2. 

The sum of the first n terms is given by: 

n 5 . 
Sy = 5la+ 1) where a is the first term, / is the last term. 

= S(1+2n-1) 

= 111 

In this case the general result was easy to guess, but remember 

that a guess is not a proof. Thankfully in this example we had 

a method (sum of an AP) to verify our guess. This will not 

always be the case. 
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Consider the expression 4n3 — 18n2 + 32n — 15 for values of n 

from 1 to 4 as shown in the table below: 
  

n 1 2 3 4 

4n3—18n%+32n-15 3 9 27 81 

  

              

The expression appears to produce the successive powers of 

3, and so we could assume, based on the results in this table, 

that 4n3—18n%+32n—15 = 3", 

Can we then say that this will always be the case, and if so, 

what would you predict the value of the expression to be 

when n = 52 Check to see if your prediction is correct. 

Many  formulae 

which  we may =5 - 

guess or develop et 

from simple 

cases can  be 

proved using 

the principle of 

mathematical induction. 

This method of proof relies upon a similar principle to that 

of ‘domino stacking’ In the process of domino stacking, one 

domino is first pushed over, thus causing a series of dominoes 

to fall. Before each successive domino will fall, the preceding 

domino must fall. 

With induction, for each expression to be true, the expression 

before it must also be true. The process can be summarized 

into four steps: 

Step 1: the first expression must be true (the first domino 

falls) 

Step 2: assuming that a general expression is true (assume 

that some domino in the series falls) 

Step 3: prove that the next expression is true (prove that the 

next domino in the series falls) 

Step 4: if all of these events happen then we know by 

induction that all of the expressions are true and thus the 

original formula is true (all the dominoes will fall). 
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First we need to state what our proposition is. We do this as 

follows: 

Let P(n) be the proposition that 1 +3+5+7+ ...+ (2n-1) 

=n? foralln=1. 

Next we proceed with our four steps: 

Step1: testforn=1 

LHS =1 AND RHS = 1’= 1, .. LHS=RHS 

.. the proposition P(n) is true for n = 1 (the first domino 

falls!) 

Step 2:  assume that P(n) is true for n = k (a general domino 

falls) 

ie. 1434547 +...+@Rk-1)=#2 

Step 3: test the proposition for n = k + 1 (prove that the 

next domino falls) 

i.e. we wish to prove that 1 +3 +5+ ... 

ot k-1 +{2(k+ 1) -1} = (k+ 1)* 

Now,LHS =1+3+5+ ...+ (2k-1)+ (2k+ 1) 

=k+Rk+1)(as 1 +3+5+...+(2k-1)=k 

(from Step 2) 

=(k+ 1) 

=RHS .. P(n)istrueforn=k+1 

Step 4: Thus, if the proposition is true for n = k (Step 2), then 

it is true for n = k + 1. As it is true for n = 1, then it must be 

true for n =1+ 1 (n=2). As it is true for n = 2 then it must 

hold for n =2+ 1 (n = 3) and so on for all positive integers n. 

An alternative way of looking at mathematical induction is 

to think of the problem as a series of assertions. If the first 

assertion is true, and then each assertion which is true is 

followed by a true assertion, then all of the assertions in the 
sequence are true.



    

Step 1: The formula is actually a series of assertions: 

1 
=1: 1 = =x1x2 & 2 

n=2  1+2 =%x2><3 

n=13; 1+2+3 =%><3><4etc. 

The first assertion is obviously true so we now need to prove 

that the assertion following each true assertion is itself true. 

Step 2: Suppose the k™ assertion is true, 

_ kkr 1) 
iel+2+3+..+k 3 

Step 3: Now add the (k + 1)" term i.e. (k + 1) to both sides of 

this equation, obtaining: 

142434 . +k+(k+1) = k—(k;1)+(k+l) 

_ k(k+1)+2(k+1) 

2 

_ (k+1)(k+2) 

2 

Step 4: But this is equivalent to the (k + 1) assertion, which 

is true if the k™ assertion is true. We have thus shown that the 

assertion following each true assertion is also true, and thus 

by mathematical induction the formula given is true for all n. 

Exercise A.8.2 

Prove by induction that for all n: 

a 1+4+7+...+(3n-2) = -n(3n-1) 

B 
1—
 

b 145+9+...+(@n-3) = n(2n-1) 

c 24+4+6+...+2n=n(n+1) 

d 5+10+15+..4+5n:§n(n+1) 

e 6+12+18+...+6n = 3n(n+1) 

f 1+2+4+8+...4+2" =2n-1 

g l+r+rP+ ...+t = 

  

h 12+324+ 5%+ ...+ ( %n(4n3—1) 

i 12-224 32— .+ (-1)"'n? = %(—I)” —In(n+1) 

In this section we consider some propositions involving 

divisibility and inequalities. 

  

Let P(n) be the proposition that 9”—1|8 (ie. 97-1 is 

divisible by 8) for all n > 1. 

Step 1: The proposition is true when n = 1 since 9' -1 =8 

which is divisible by 8 

Step 2: Assume P(n) holds true for n = k, i.e. assume that 

9%—1 = 8m where m is an integer. 

Step 3: Prove P(n) is true for n =k + 1. i.e. prove that 

9%+1 -1 is divisible by 8. 

Now 91— 1 =9(9%) -1 

I 9(8m+1)-1(as 9*=8m+ 1 (from Step 2)) 

72m+ 8 I 
I 8(9m + 1) which is divisible by 8 

Therefore, P(n) is true for n =k + 1. 

Step 4: That is, if the proposition holds for n = k, it also holds 

for n=k+ 1. Asitis true for n = 1 it is then true for n = 2, and 

so on, and thus the proposition is true forall n > 1. 
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Let P(n) be the proposition that 2" > n foralln = 1. 

Step 1: P(n) is true when n = 1 since 

LHS=2'=231=RHS 

Step 2: Assume that P(n) holds for n = k; i.e. that 2* > k 

Step 3: Prove that P(n) is true forn =k + 1 

i.e. show that 2¢"'>k+ 1. 

From Step 2 above, 2~ >k 

2x2% > 2k (multiplying both sides by 2) 

But,2x2t=2k+1 gkl 0k 

Now, k> 1s0 2k=k+k >k+ 1 and hence 2¢*' >k + 1 

i.e. P(n) holds for n =k + 1 if it holds for n = k. 

Step 4: Thus as P(n) holds for n = 1, it holds for n =1 + 1 

and so on for all values of n > 1. 

T el T 00 o el ol [ PR 0 Tt s e | 

Exercise A.8.3 

By induction, prove that: 

a 972 — 4" js divisible by 5 forall n =1 

b n® - n is divisible by 3 for all n > 1 

c n* + 2n is a multiple of 3 forall n > 1 

d 7"+ 2 is divisible by 3 for all n > 1 

& 9"+~ 8n -9 is divisible by 64 forall n > 1 

f 2"21+nforalln =1 

Extra questions 
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We now consider more difficult propositions. 

  

Let P(n) be the proposition that n* + 5n is divisible by 6 for 

alln > 1. 

Step 1: Testforn=1 

1° + 5 x 1 = 6 which is divisible by 6 and so the proposition 

istrueforn=1 

Step 2: Let P(n) be true for n =k, 

3 

je OH Sk _ m < k3 + 5k = 6m, mis an integer.   

Step 3: Testforn=4k+1 

(k+1)Y+5(k+1) =k +3k+3k+1+5k+5 

= (k*+ 5k) + 3k* + 3k + 6 

= 6m + 3k* + 3k + 6 (from Step 2) 

=6m+6+3k(k+1) 

Now k(k + 1) is an even number and thus it has a factor of 2 

(the product of two consecutive integers is even). Thus the 

product 3k(k + 1) can be written as 3x 2 x g where q is the 

quotient of k(k + 1) and 2. 

s LHS=6m+6+6q 

=6(m + 1 + q) which is divisible by 6. 

Step 4: Thus, if the proposition is true for n = k then it is 

true for n =k + 1 as proved. As it is true for n =1, then it must 

be true forn=1+ 1 (n=2). As it is true for n = 2 then it must 

hold for n =2 + 1 (n = 3) and so on for all positive integers 7.



  

That is, by the principle of mathematical induction P(n), is 

true. 

    Let P(n) be the proposition that 
n 

2 (4r—6) = 2n(n—2) forallne Z*. 

r=1 

However, when dealing with sigma notation it can be helpful 

to write the first few terms of the sequence: 

n 

2(41‘46) = _2+42+6+10+...+(4n—6) = 2n(n—2) 

r=1 

Step 1: P is true for n = 1 since 
LHS=4x1-6 = 2x(1-2) = -2 =RHS. 

Step 2: Assume that P(n) is true for n =k, 

ie. 2 (4r—6) = 2k(k - 2). 

1 
Step 3: Test P(n) forn=k + 1: 

Adding the (k + 1)" term, [4(k+ 1) - 6] to both sides gives 
k 

2 (4r—6) + [4(k + 1) - 6] =2k(k -2) + [4(k+ 1) - 6] 

re (from Step 2) 

= 2k*- 4k +4k -2 

= 2(k*-1) 

2(k+ 1(k-1) Il 

2(k+ D[(k+1)-2] 

which is the (k + 1) assertion. 

That is, P(n) is true for n = k + 1. 

Step 4: Thus, if the proposition is true for n = k, then it is 

true for n = k + 1. As it is true for n = 1, then it must be true 

forn=1+1(n=2). As it is true for n = 2 then it must hold 

for n=2+ 1 (n=3) and so on for all positive integers 7. 

That is, by the principle of mathematical induction, P(n) is 

true. 

| O i Vol ¥ i LT 0w L e b 

Exercise A.8.4 

Prove the following using the principle of mathematical 

induction forall ne Z* . 

n 

  

» 

1 = N 

Z(Zr—l)(21‘+l) 2n+1 
r=1 

n 

b Z (2r—1)% = n2(2n2-1) 

¥ =) 

n 

p 1 ri= o(gn+l_ c 25 3¢ 5) 

=1 

d 24224234 .. 4217 = 2(2"-1) 

  

e 1+3+9+...+3"-1:%(3L1) 

£ talala b lo—pogies 
2 22 an—1 

g 1.1 423435+ ... +02Zn—=1) = én(n+l)(4n—l) 

h 1.1 +32+ 54+ .. +(2n—-1)27-1 = 3+27(2n-3) 

Extra questions 

  

Mathematics can be considered to be the study of patterns. 

A useful ability in maths can be forming a rule to describe a 
pattern. Of course any rule that we develop must be true in 
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all relevant cases and mathematical induction provides one 

method of proof. 

Patterns are not confined to tessellations! 

  

  

      

Let d represent the number of diagonals in an n-sided 

polygon. The value for d is shown in the table for values of n 

up to n = 6 (construct the next few diagrams in the pattern to 

verify and extend this table). 
  

n 3 4 5 6   

            d 0 2 5 9   

  

d, 
Plotting the points related 

Here are two final examples: to the variables n and d, 

- o (above) suggests that the 

relationship between them 

could be quadratic, and so 

we might assume that 

    
) . 

d, = an“+bn+c 

  

Substituting the first 3 values for n gives: 
C a   Consider f(n) = fi then: fin+1) = 
2 

  

) ant 1" 
- n=3 =0=9%+3b+c 

n=4 =2=16a+4b+c 

Now # —/(n%'l)—/’(u),hglf a 2. 
" on  on+l  on ~ 

£ n=5 =5=25a+5b+c 

Equating and solving for a gives a = -2 

Solving these three equations for a, b and ¢ gives 

sty = =2 = L oagy - i 
e 2 a=+,b=-2,andc=0andthus d, = +n>— 2y = 21=3) 2" 72 2 1

0
 1 50 
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=3 
Whenn=6, d = 6%) = 9, which corresponds to the 

tabulated value for n = 6 above. 

So far we have formed a conjecture that the number of 

diagonals in an n-sided convex polygon is given by 
- n(n— s 5 2 . 

Gr= = This formula remains a conjecture until we 

prove that it is true for values of n > 3. 

Proof: 

Let P(n) be the proposition that the number of diagonals 

that can be ggawn in an n-sided convex polygon is given by 

d, = ”—”2— forn=3. 

= 0 which is   Step 1: P(n) is true for n =3 as dy = 3(3; 3) 

the number of diagonals in a 3-sided polygon. 

Step 2: Assume that P(n) is true for a k-sided polygon i.e. 

that d, = % We consider the effect that adding an 

extra side will have on the result. 

Step 3: Looking at the tabulated values for n and d, you 

should see that adding an extra side to an n-sided polygon 

produces an extra (n — 1) diagonals, and so we can say that 

d i =d, + the extra diagonals added by the extra side 

= d+(k-1) 

k(k—3) 
== +(k-1) 

_ k(k=3)+2(k—1) 
2 

_ (ktD(k-2) 
2 

_ (k+D[(k+1)-3] 
2 

Step 4: Which is the (k + 1)" assertion. 

Thus, if the proposition is true for n = k, then it is true for 

n =k + 1. As it is true for n = 3, then it must be true for 

n=3+1(n=4). As it is true for n = 4 then it must hold for 

n=4+1 (n=5)and so on for all integers n = 3. 

By the principle of mathematical induction, P(n) is true. 

  

Exercise A.8.5 

Find the sum to n terms of the sequences below and then 

prove your results true. 

a 2+5+10+17+... + (0 + 1) 

b 1+8+27+64+...+n 

) Tod gl y gl 
5 25 125 5n 

d P+3¥+5+..+02n-1)° 

e 1.3+424+35+..+n(n+2) 

g Ll o1 
13 3:5 5:7 @rn—-1)(2n+1) 

For questions 2 to 6, find the required general result and then 

prove your answer using mathematical induction. 

2, 1, 3,6, 10, 15, ... are called triangular numbers. 

. . . o e e £ ® & @ 

Denoting the nth triangular number as ¢ , find a formula for 

3 Find the size of each angle in a regular #-sided polygon. 

4. Find the maximum number of pieces that can be 

formed making n straight cuts across a circular pizza 

(pieces don’t have to be of equal size). 

5 Find the number of squares of all sizes on an n x n 

chess board. 

6. Prove that a three digit number is divisible by 3 if the 

sum of its digits is divisible by 3. 

Extra questions 

  

Answers will vary. 
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Postscript 
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Simultaneous linear equations 

in two unknowns 
airs of simultaneous equations in two unknowns may be 

P solved in two ways, either algebraically or graphically. To 

solve means to find where the two straight lines intersect once 

they have been sketched. So, we are looking for the point of 

intersection. 

Method 1:  Graphical 

    

     

Example A.9.1 

Solve the system of linear equations y = — x + 7 and 
y=2x+1. 

We sketch both lines on the same set of axes: 

y 

X 

  

1 23 45 67\8 

Reading off the grid we can see that the straight lines meet at 

the point with coordinates (2, 5). So, the solution to the given 

system of equationsisx =2 and y = 5. 

There are a number of ways that the graphics calculator can 

be used. 

6.67 

1. Plot the graphs 

    
  

       

    
  -6.67 
    

2. Use graph/trace 

rase Geometry Trace 

  
  

3. Find solution 

Note that the 
pixels on the screen 
produce an 
approximate 

solution 

    

   
   

    
  

A more satisfactory way is to use the calculator to find the 

intersection. 

R 1: Actions » 
i 2: View M 

ks 3: Graph Entry/Edit 
1% 4: Window / Zoom 
  

1: Zero 
2: Minimum 

3: Maximum     

    

    

  

517: Table R s S: Ifflection 
*5 8: Geometry (5 6: dy/dx 
111 9: Settings. .. : b 7: Integral   

)& 8: Bounded Area 
-6.67 {© 9: Analyze Conics ¥       
 



Thirdly, you can use the solve facility: 

     

    

{25} | 

   
llnSolve({i:;:il .{x,y}) 

Similar calculations can be performed on Casio models. This 

screen uses Graph mode (5) followed by F6-draw, Shift F5- 

G-Solv and F5-INTSCT to find the intersection. 

  

B [EXE]:Show coordinates 
Y1=-x+7 
Y2=2x+1 

  

  ~ 
INTSECT       

Method 2:  Algebraic 

There are two possible approaches when dealing with 

simultaneous equations algebraically. They are the process of: 

L. Elimination 

2. Substitution 

The choice of method often depends on the way the equations 

are presented. 

Elimination method 

The key step in using the elimination method is to obtain, for 

one of the variables (in both equations), coefficients that are 

the same (or only differ in sign). Then: 

1. if the coefficients are the same, you subtract one 

equation from the other - this will eliminate one of 

the variables - leaving you with only one unknown. 

IS]
 

if the coefficients only differ in sign, you add the two 

equations — this will eliminate one of the variables - 

leaving you with only one unknown. 
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As it is easier to add than subtract, we try to eliminate the 

variable which differs in sign. In this case the variable ‘y’ 
is appropriate. However, the coefficients still need to be 

manipulated. We label the equations as follows: 

x=2y =-7-(1) 

2x+3y =0 -(2) 

3 x(1): 3x—6y = 21 -(3) 

2 x(2): 4x+6y = 0 - (4) 

Adding (3) + (4): Tx+0 = -21 

ox =3 

Substituting into (1) we can now obtain the y-value: 

-3-2y=-Te-2y=-Ad4ey=2. 

Therefore, the solution is x = -3, y = 2. 

Once you have found the solution, always check with one of 
the original equations. 

Using equation (2) we have: LH.S = 2Xx-3+3x2 =0 = 

R.H.S. 

Note that we could also have multiplied equation (1) by 2 and 

then subtracted the result from equation (2). Either way, we 

have the same answer. 

Substitution method 

The substitution method relies on making one of the variables 

the subject of one of the equations. Then we substitute this 
equation for its counterpart in the other equation. This will 

then produce a new equation that involves only one unknown. 

We can solve for this unknown and then substitute its value 

back into the first equation. This will then provide a solution 

pair. 

  

Label the equations as follows: Sx—y =4 -(1) 

I x+3y =4 -(2)



From equation (1) we have that y = 5x—4 - (3) 

Substituting (3) into (2) we have: x+3(5x—4) = 4 

e 16x-12 = 4 

< 16x = 16 

ex=1 

Substituting x = 1 into equation (3) we have: 

y=5xl-4=1 

Therefore, the solution is given by x =1 and y = 1. 

Check: Using equation (2) we have: LHS=1+3x1 = 4 

=RH.S. 

Not all simultaneous equations have unique solutions. 

Some pairs of equations have no solutions while others have 

infinite solution sets. You will need to be able to recognise 

the ‘problem’ in the processes of both algebraic and graphical 

solutions when dealing with such equations. 

The following examples illustrate these possibilities. 

  

a Algebraic solution: 

Label the equations as follows: 

2x+6y = 8 - (1) 

3x+9y =12 -(2) 

3x(1): 6x+ 18y = 24 - (3) 

2x(2): 6x+18y = 24 —(4) 

In this case, we have the same equation. That is, the straight 

lines are coincident. 

If we were to ‘blindly’ continue with the solution process, we 
would have: 

3x(1)-2x(2): 0=0v 

  

INEAR"CQUATIONS 

The algebraic method produces an equation that is always 

true, i.e. zero will always equal zero. This means that any pair 

of numbers that satisfy either equation will satisfy both and 

are, therefore, solutions to the problem. Examples of solutions 

areex=4,y=0,x=1,y=1,x=7,y=-1.In this case we say 

that there is an infinite number of solutions. 

Graphical solution: 

Graphically,  the  two 4 

equations produce the same 3 

line. The coordinates of any 

point on this line will be 

solutions to both equations. 

b Algebraic solution: 

Label the equations as follows: 

2x+6y = 8 - (1) 

3x+9y =15 -(2) 

3 x(1): Il o
 = 1 g 6x + 18y 

2x(2): Il 
W
 S | —
 S =
 6x + 18y 

0=6x (4)-3): 

Graphical solution: 

The algebraic method 

produces an equation 

that is never true. This 

means that there are 

no solutions to the 

equations. Graphically, 

the two lines are 

parallel and produce no points of intersection. 

  

Exercise A.9.1 

1. Solve these simultaneous equations, giving exact 

answers. 

3x-2y = -1 b 3x+5y = 34 
T sx+2y=9 3x+7y = 44 

2x+4y = 6 c+29 =2 B - d 3x+2y 

4x -3y = -10 2x—6y = 6 
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CHAPTER A9 

. Sx+4y = 22 ¢ 5x-9y = -34 

Sx=gi= =3 2x+3p = -7 

2. Solve these simultaneous equations, giving fractional 

answers where appropriate. 

o g o 4x+2y =3 a 3x—y =2 b X+ 2y 

5x+2y =9 x=3y =0 

I_3y=4 
3x+y =0 2 

¢ 2x-4y =0 d 4.r+§'£ =1 
2 

3x 1 2 2X gy = - 
sx+ = 4 5 V=3 

e 3 f | 
4x+y =2 x72‘v=§ 

3. Find the values of m such that these equations have no 

solutions. 

3x—my = 4 Sty = 12 
a 

xt+ty =12 mx—y = -2 

4x -2y = 12 

3x+my =2 

4. Find the values of m and a such that these equations 

have infinite solution sets. 

4 dx+my = a b Sx+2y =12 

2x+y = 4 mx+4y = a 

3x+my = a 

2x—4y = 6 

Extra questions 

  

Simultaneous linear equations 

in three unknowns 

So far we have looked at linear equations in two unknowns. 

However, this can be extended to linear equations in three 

unknowns. Equations such as these, involving the variables x, 

y and z take on the general form ax + by + cz=kwhere a, b, ¢ 

and k are real constants. 

Just as for the case with two unknowns, where we required 

two equations to (hopefully) obtain a unique solution to the 

system of simultaneous equations, when dealing with three 

unknowns we will require a minimum of three equations to 

(hopefully) obtain a unique solution. 
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The solution process for a system of linear equations in three 

unknowns will require, primarily, the use of the elimination 

method. The method usually involves the reduction of a 

system of three equations in three unknowns to one of two 

equations in two unknowns. This will then enable the use of 

the methods already discussed to solve the ‘reduced’ system. 
Once two of the unknowns have been determined from this 
'reduced' system, we substitute back into one of the original 
three equations to solve for the third unknown. 

  

We label the equations as follows: 

x+3y—z =13 -(1) 

3x+y—z =11 -(2) 

x+y=3z =11 -(3) 

Reduce the system to one involving two equations and twa 

unknowns. 

We first eliminate the variable z: 

I @- ) 2x—2y = -2 - (4) 
Il 3x(2)-(3):  8x+2y =22-(5) 

Solve the reduced system of equations. 

(4) + (5): 10x =20 ©x=2 

Substitute into (4): 

2X2-2y=-2-2y=-6&y=3. 

Solve for the third unknown. 

Substituting x = 2 and y = 3 into (1): 

243%x3-z=13&z=-2 

Therefore the solution is given by x =2,y =3 and z = -2. 

Check: Using equation (2): 

LHS.=2+3-3%x-2=11=RH.S



  

We have already seen that linear equations in two unknowns 

are represented by straight lines on the Cartesian axes. The 

question then becomes, “What do linear equations in three 

unknowns look like?” 

Equations of the form ax + by + ¢z = k representa plane in 

space. To draw such a plane we need to set up three mutually 

perpendicular axes that coincide at some origin O. This is 

commonly drawn with a horizontal x-y plane and the z-axis 

in the vertical direction: 

axt+tbytcz =k 

In Example A.9.5 we obtained a unique solution. This (2, 3, 

-2) means that the three planes must have intersected at a 

unique point. We can represent such a solution as shown in 

the diagram below: 

  

Z 

* y 

There are a number of possible combinations for how three 

planes in space can intersect (or not). Labelling the planes as 

a, B and y the possible outcomes are shown below. 

All three planes parallel. 
o 

B 

Y 

Two planes coincide. 

  

All three planes coincide. 

@ =p=7y   

Any line of intersection is 
parallel to the other two. 

p 

  

Y 

Two parallel non-coincident 
planes crossed by the third plane. 

B     

  

    
   

Two parallel coincident planes 
crossed by the third plane. 

  

All three planes intersect along 
a straight line. 

p 

All three planes intersect 
at a unique point. 
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We label the equations as follows; 

x+2y =10 -(1) 

3x+2y—4z = 18 -(2) 

y+z=3 -(3) 

We eliminate x using equations (1) and (2): 

(2)-3x(1): —4y—4z = 12 

Sytz=3 -(4) 

We are now left with equations (3) and (4). However, these 

two equations are identical. 

To obtain the solution set to this problem we introduce a 

parameter, we let z be any arbitrary value, say z = k where k 

is some real number. 

Then, substituting into equation (4), we have: 

yvtk=3=y=3-k, 

Next, we substitute into (1) so that 

x+2(3-k) = 10=>x = 4+2k. 

Therefore, the solution is given by 

x=4+2ky=3-kz=k. 

Notice the nature of the solution. Each of the variables is 

expressed as a linear function of k. This means that we have a 

situation where the three original planes meet along a straight 

line. 

Supplementary example - matrices. 
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Exercise A.9.2 

Solve the simultaneous equations: 

6x+4y—-z =3 

a g7 Lyt = =2 

Sx+4y =0 

xtytz=2 

b 4x+y 
—x+3y+2z o

 

o
 

4x+9y+13z =3 

c —-x+3y+24z = 17 

2x +6y+14z = 6 

x—=2y-3z=3 

d x+y-2z=17 

2x—-3y-2z=0 

X=y—z=2 

e Ix+3y-7z2=7 

x+2y-3z=3 

x=2y =-1 

f —=x=y+3z 

y-z=10 

—2x+y-2z=35 

h x+4z =1 

x+y+10z = 10 

Answers 

 



  

Theory of Knowledge 

The Need for New Concepts and Notations 

Throughout history, various notations and operations 

were introduced by mathematicians when they discovered 

their current set of notations was inadequate to address 

certain new mathematical concepts. In chapter A3 of the 

SL text, we studied the logarithm as an inverse operation to 

exponentiation. 

The concept of exponentiation was used by Euclid as early 

as 300BC in ancient Greece. In other parts of the world, 

mathematicians continued to explore this concept and 

discovered new rules governing the proper use of exponents. 

However, it was not until the 17th century that the logarithm 

was first introduced by John Napier in a book titled Mirifici 

Logarithmorum Canonis Descriptio. 

During the years when the idea of the logarithm was not 

formalized in the field of mathematics, were people not able to 

find the inverse of exponentiation? Taking this mathematical 

operation as an example, have you ever wondered what people 

used before a certain concept or notation was introduced? 

In mathematics, as well as in other disciplines, before a 

concept was introduced and accepted to address a knowledge 

gap, does it mean that particular concept did not exist or 

was it irrelevant at that moment in time? What drives the 

discovery of a new concept in mathematics? Does intuition 

play a pivotal role in recognizing a gap in the current set 

of knowledge and notations before a mathematician can 

formalize and present a new concept, a new symbol, or a new 

notation? In other words, before a new mathematical concept 

is introduced did the empirical evidence or the rational 

thinking come first? Is it necessary before a new concept is 

formalized and accepted that it must have both empirical 

evidence and rational thinking? 

With respect to the written notations in mathematics, have 

you ever wondered why certain symbols and notations are 

reused in different contexts and have very different meaning? 

For example, if you are presented with (3,5), does it suggest 

a coordinate pair on the Cartesian plane or does it suggest 

an open interval between 3 and 5 exclusively? Similarly, have 

you ever doubted your understanding of the difference 

between f(x) and f(x)"'? These are just some examples to 

illustrate how a precise language like mathematics can also be 

ambiguous to a certain extent. If mathematics is a language, 

what grammatical rules are you following? Is this language 

evolving with time? Or is this language static and unchanging 

over time, thus limiting its ability to communicate newer 

concepts in mathematics? 

Assumptions and Conventions 

By definition, an assumption is a claim for a concept, a thing, 

or a situation, that is accepted as true without evidence, 

justification, or proof. Conversely, by definition, convention 

is a way in which an action is usually taken or a way in which 

something is usually done. 

In mathematics, when one attempts to provide an answer 

to a question, it is necessary to show the logical deductive 

reasoning to ensure there is no error in applying the algebraic 

rules. However, does it merely mean that assumptions and 

conventions are not to be used and considered when one 

studies mathematics? If one only provides an answer solely 

based on assumptions, does it mean that the answer is wrong? 

It is understood by mathematicians that x is x', when the 

exponent 1 is already assumed in the written notation of x. 

Similarly, the expression log x is assumed to be written in base 

10 (i.e. log ) or the radical term Jx is already understood to 

be the same as ¥x . Do these assumptions consequently affect 

the validity of the answer? Likewise, if these assumptions are 

generally accepted as a convention in written mathematics, 

then who decides which conventions are to be adopted or 

rejected? How do cultural and historical factors influence 

these assumptions and conventions? Are these written 

mathematical conventions infallible? 

If mathematics is constructed from deductions, in which 

one must assume certain things before inferring conclusions, 

then how does it affect the validity of the conclusions if the 

original assumptions are not entirely true? If the assumptions 

were not entirely true, then would it imply the conclusion to 

be false? Or would that be considered as an exception to the 

general rule? 

If not true, then false? 

Finding an answer for every question in mathematics may be 

an impossible task despite utilizing the finite set of axioms 

and the abstract language of the subject. Most mathematics 

questions in pre-tertiary school contexts often present 

themselves into the polarity of right or wrong, correct or 

incorrect, true or false, et cetera. However, in the absence of 

correctness in the answer of a given mathematics question, 

does it immediately imply that it is incorrect? In other words, 

is incorrectness in mathematics the same as being wrong in 

mathematics? Similarly, how does inaccuracy in mathematics 

fit into the discussion of incorrectness and wrongfulness? 

Topic 1 in the Higher Level programme introduces the notion 

of proofs, and in particular, proof by mathematical induction. 

Indeed, mathematical proofs are essential for new conjectures 

to be proven and their validity accepted. However, is it right 

to claim that we gain new knowledge in mathematics if a 
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given proof is mathematically valid? If so, then is it necessary 

for everything in mathematics to be proven true first before 

one can use it? If not, then how do we distinguish those 

concepts which are infallible without proofs and those which 

are proven true, subject to the validity of the proof? More 

importantly, the foremost critical question is to ask what is 

considered to be the validity of a proof? If a proof is shown to 

be true, then does it automatically infer its validity? 

One important aspect of mathematical proofs is to provide 

generalizations of a result. The process of moving from specific 

results to a generalization is definitely an art. However, have 

you ever wondered about the potential risk in this process of 

generalization? How rigourous does one need to be in order 

to ensure the generalization is not over simplifying the result? 

If a phenomenon exists with absolute certainty, then what 

parameters must be established before it could be generalized 

with symbols and axioms? 

Similar to other subject areas, even when a certain knowledge 

claim has been proven to be true today, no one can guarantee 

its validity will withstand challenges through future times. 

Even though it only takes one example to disprove a certain 

conjecture or theorem, it involves more effort and time 

than one could ever imagine. Take geometry as an example, 

what is the shortest distance between two distinct points? 

In most primary and secondary mathematics classes, the 

shortest distance between two distinct points is a straight 

path connecting them; and this is certainly true according 

to Euclidean geometry. This is Euclid’s fifth postulate which 

dates back to 330 BC. 

If a straight line crossing two straight lines makes the interior 

angles on the same side less than two right angles, the two 

straight lines, if extended indefinitely, meet on that side on 

which are the angles less than the two right angles. 

Euclidean geometry remained unchallenged until the early 

19th century when non-Euclidean geometric concepts 

started to emerge. In Riemannian Geometry and in 

hyperbolic geometry, the shortest distance between two 

points is no longer necessarily a straight path. It is often not 

until the final year of secondary education or even in tertiary 

education when these challenges are presented and begin 

to question the first set of knowledge. When situations like 

this emerge in mathematics (or even just within secondary 

mathematics education), does it suggest that the content of 

primary and secondary mathematics is inadequate to enable 

students to appreciate the fullness of the discipline? Similarly, 

how incorrect was the first introduction of a straight path 

being the shortest distance in the classroom? Have you ever 

questioned whether or not it is acceptable to present some not 

entirely true statements for the sake of simplifying a complex 

discussion in mathematics? 
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Many students and the general public often see mathematics 

as a subject which has its strength in the provision of absolute 

certainty. However, in statistics the results are also presented 

with a tolerance level of uncertainty. How does it affect the 

validity of the result when it may not necessarily be certain? 

Conversely, if a given result is presented with 100% certainty, 

does it mean it is less valid without a certain level of deviation 

and significance level? 

Imaginary Numbers 

An imaginary number is a complex number with a real 

number and an imaginary unit. However, does the term 

imaginary number suggest that it is merely just an invention 

to satisfy the desire of mathematicians? In other words, 

when the given limits for real numbers do not address the 

additional mathematical concepts, have the mathematicians 

created this new concept to fill in the gap? The concept of 

imaginary numbers was not widely used and adopted until 

the 18th century by Leonhard Euler and Carl Gauss. When 

mathematicians cannot find known concepts and existing 

knowledge to address a new mathematical phenomenon, 

does it give them an automatic pass to create new sets of rules 

to govern their findings? 

When there is a need to define new number systems, new 

mathematical rules and theorems, or new methods in 

approaching emerging topics in mathematics, does it imply 

that the existing set of axioms is obsolete and inadequate to 

meet the new demands? If it is necessary for newer rules, is it 

better to simply create new ones as extensions of the current 

system, or is it better to start from scratch and disregard 

all existing rules? If the mathematical field continues to 

build extensions from the existing set of axioms and rules 

to facilitate new findings, will there become a time when it 

becomes impossible to extend any further? 

The French have the rather endearing practice of 

memorialising their great mathematicians. This plaque to the 

memory of Pierre-Simon, Marquis de Laplace (1749 - 1827) 

is on the wall of the Central Post Office in Saigon, Vietnam. 

 



 



  

his chapter will deal with three important results and 

the ways in which they can help us sketch the graphs of 

polynomials. 

Polynomials are functions of the form: 

  

Remainder Theorem 

If a polynomial P(x) is divided by a linear polynomial (x - a), 

the remainder is P(a). 

In general: dividend = divisor x quotient + remainder 

Factor Theorem 

If, when a polynomial P(x) is divided by a linear polynomial 

(x - a), the remainder P(a) is zero, then (x - a) is a factor of 

P(x). 

Fundamental Theorem of Algebra 

Every polynomial equation of the form P(z) = 0, z € C, of 

degree n e Q" has at least one complex root. 

This has the important result that: 

A polynomial P (z) = 0, z e C, of degree n € Q, can be 

expressed as the product of n linear factors and, hence, 

produce exactly n solutions to the equation P (2) = 0. 

This does not, however, mean that, for example, all cubic 

equations have three real solutions. 

The truth of these matters can best be understood by looking 
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at the graphs of polynomials. A good way to do this is with a 

graphic calculator. 

Polynomial Graphs 

The basic shapes can be investigated using a graphic calculator. 

Linear functions in which the highest power is 1 are straight 

lines. 

Power 2 polynomials are called quadratics. Their graphs are 

parabolas. These may or may not intersect the x-axis. 

  

  

      
Note that all the principles of graph translation apply to 

polynomials. 

If the squared term is negative, the parabola will be 'inverted'. 

  
 



   

Power 3 polynomials are called cubics. 
  

      

6.67 %y 

fl(,\')-x3+x2—2-x+3 

! X 

F10 [ 1 10 

The extra power has added an extra 'hump' - a maximum or 

minimum. It seems likely that a power 4 polynomial will have 

three 'humps' - and this is often true: 

  

      5.09 .2 

| -4.15 

There are, however, cases in which a maximum and minimum 

can coalesce to form a 'point of inflection’. At such points, the 

graph flattens out for a moment and then carries on in the 

same direction: 

  

  

  

fl(x)=x4+2‘x3     -2.51   

In this case, a maximum and minimum have become an 

inflection point at the origin. 

With that qualification, it is possible to infer the general 

shape of the graph of a polynomial from the highest power 

(or degree) of the polynomial. 

The other key features are the axes intercepts. The y intercept 

can be found by evaluating P(0). 

The x-intercepts are harder as we need to solve P(x) = 0. 

This is usually approached by factorisation using the Factor 

Theorem. 

AND REMAINDER | HEOREMS 

  

Factorising Polynomials 

Sometimes we can 'get lucky' with a polynomial and can see 

how to factorise it. 

  

The polynomial is cubic. If x»eo, y->+co. Thus, with the 

qualifications mentioned, we might expect the shape at the 

top left of this page. 

x =0, y =0 implies the graph passes through the origin. 

The other x-intercepts must be found by solving y = 0. 

or ¥’ —x*—2x=0. 

Since x is a common factor, an immediate factorisation is 

possible: x(xz—x—2)=0 

The quadratic will factorise using the inspection method: 

x(x+1)(x=2)=0 

Now we use the 'null factor rule’ to solve: 

We already have x = 0 

x+1=0=>x=-landx-2=0=x=2. 

These features can now be added to a preliminary sketch: 

(=1,0) 0,0) (2,0) 

which gives: 

(-1,0)   
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CHAPTER 

If the factorisation is not immediately obvious we use the 

Factor Theorem. 

This works very like the factorisation of numbers. Suppose we 

were asked to factorise 1262 We might begin by noticing that 
the number is even and so 2 is a factor. Once that is discovered 

there is a second factor that can be found by the division 

126+2. Many people will do this in their head. However, we 

will review the process of division as its algebraic version 

follows an identical pattern. 

The common layout for a division of numbers is: 

21 12:6 

Unlike the other three arithmetic processes (which move 

from right to left or from small numbers to large), division 

works from the large numbers to the small, or left to right. 

This is because division is sharing. If this problem was to 

share $126 between 2 people, we would probably begin by 

sharing the hundred dollar notes out first - which we cannot 

do as there is not enough money. Next we view it as 12 $10 

notes - so each person gets $60. This leaves $6 to share giving 

the answer as $63. 

This is usually written as: 

0 
. 2126 Divide 1 by 2 (=0). 

0 ; i 
Multiply the dividend (0) 

. 2 (1) 26 by the divisor (2) to get 0. 

0 
. 2126 Subtract (1-0=1) to get 

0 the remainder 1. 

1 

Include the next column 

04 to the right - “bring down”. 

12 
REPEAT the 4 processes. 

06 

. 21126 Divide 12 by 2 (=6). 

Ov 
12 

Multiply the dividend (6) 

0V by the divisor (2) to get 12. 
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o . 21126 Subtract (12-12=0) to get 

oy the remainder 0. 
12 

12 
0 

. 06 
2126 Include the next column 

oy to the right - “bring down”. 
12 
12 

06 REPEAT these processes. 

. 063 

2]1126 
0y Divide 6 by 2 (=3). 

12 
12 

06 

063 
. 2126 Multiply the dividend (3) 

04 by the divisor (2) to get 6. 

12 

12 
06 

6 

. 063 

21126 Subtract (6-6=0) to get 

0y the remainder 0. 
12 
12 

06 There are no numbers left. 

6 The process is complete. 
0 The answer is 63 remainder 0 

We have shown this process in detail because keeping it in 

mind can help when working through a polynomial division. 

The technique is the same except it is performed with algebra 

instead of arithmetic. 

  

There is no obvious common factor, so we use the Factor 

Theorem.



Let: P(x)=x"—3x"—10x+24 

First, we look for a zero: 

P(1)=1"-3x1*-10x1+24%0 

P(-1)=(=1)"=3x(=1)" ~10x(~1)+24£0 

P(2)=2"-3%x2"-10%2+24#0 

=8-12-20+24 

=0 

By the Factor Theorem, x — 2 is a factor of P(x). 

The other factor can be found by division: P(x) + (x - 2). 

. x? Divide x* by x (=x2). 

x=2 | x'=3x*=10x+24 Onlylook at the 
highest powers. 

x? Multiply the dividend 

x=2 | 2’327 =10x+24 (x*) by the divisor 
x*=2x? (x-2) to get x*— 2x7 

. i Subtract 

r=2[x'=3x—10x+24 (-3x°-(x'-2x%)=-x7) 
xI-2x? to get the remainder-x~. 

—x? Take care with signs! 

. x* 

=2 |x =3 —10x+24 :Ctl}t':flt}}‘lf next column 
x¥-2x2 l g 

- 10x - “bring down”. 

x*- x 

x=2 | =307 - 10 +24 
x-ax | 

X7-10x 
. x*- x 

#~2 | & ~34"—T0x+24 Multiply the dividend 3o e ? 

° f—;zh ll()x (~x) by the divisor 

i+ 2% (x-2) to get —x*+ 2x. 

. x*- x 

x=2|x'=3x"=10x+24 Subtract 

Divide —x? by x (= -x). 

x| (~x2-10x~(~x*+2x) 
*Xf‘ 10x =-12x) to get the 
-x*¥ 2x 

remainder —12x. 
=12x 

. x2- x 

x=2 x‘—3xl—1l0x+24 
§ a3 Include the next column 
=2 

2 to the right 
~x2-10x “brine dowr’” 
-x24+ 2x = ring down. 

-12x + 24 

    

  

REPEAT the 4 processes. 

ACTOR'AND 

. x2- x-12 

x=2 |x3—3x3—10x+24 

REPEAT these processes. 

x3=2x2 'T 
x-10% Divide -12x by x (= -12). 

=x'+ 2x 
=12x+24 

. x*- x-12 

x=2 |2 =327 -10x+24 

¥ _Z—X ' Multiply the dividend 

:if,; lg;( (~12) by the divisor 
—_ _ _ 9 T12x + 24 (x-2)toget —12x + 24. 

-12x+ 24 

. x2- x -12 

x=2 | &' =32 -10x+24 
x3-2x? ¢ Subtract 

-x2- 10x (-12x+24-(~12x+24)=0) 
-x*+ 2x to get the remainder 0. 

-12x + 24 
-12x+ 24 

0 

This means that: 2(x)=(x-2)(x*~x-12) 

The quadratic factor can now be factorised as a trinomial: 

Px)=(x=2)(x+3)(x—4) 

We can now set about sketching the graph of: 

y=x"-3x"-10x+24 

Ifx=0,y=24. 

Ify=0, x'=3x"-10x+24=0 

(x=2)(x+3)(x—4)=0 

x=2=0=>x=2 

x+3=0=2x=-3 

x—4=0=>x=4 

We now have all the intercepts: (0,24), (-3,0), (2,0) & (4,0) 

Once these four points are on the graph, and with the general 

shape of the cubic in mind, the sketch can be completed. 

An alternative method (synthetic division) 

is discussed at: 

  

What follows is a computer derived plot. 

Note that the 'humps' are not symmetric. 
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CHarTER B:5 

  

    

Using the Factor Theorem: 2(1)=1"-2x1*~5x1+6 

=135 
=0 

By the Factor Theorem, x - 1 is a factor of P(x). The other 

factor can be found by division: P(x) + (x — 1). The required 

division should look like this: 

x?-x -6 

x=1 |.r"—2x2—5,1*+6 
x*- x? l 

—x" -5x 
X'+ x 

-6x+6 
-6x+6 

0 

So: P(x)=x"-24"-5x+6 

:(/rfl)(x2 74,'—6) 

=(x=1)(x=3)(x+2) 

This gives intercepts of: (0,6), (-2,0), (1,0) & (3,0). 
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Repeated Factors 

We have a further complication when trying to link the 

degree of a polynomial with the number of zeros (solutions 

of P (x) = 0 and hence the number of intercepts on the graph 

of y = P(x). 

This is illustrated by the graph of y = (x - 1) This should have 

two intercepts as it is of degree 2. However, this is not the case. 

As using a graphic calculator is a good way of understanding 

this issue, we will use screen grabs in this section. 

     

  

11(x)=(x-1) 

        

There is an intercept at (1,0), but it is a 'toucher'. The graph 

touches, but does not cut, the x-axis. 

What if the power of the repeated factor is 3? 

  

  

-3.72       
  

This time, the intercept is an inflection point and an intercept 

all in one. It is a good idea to use a calculator to see what 

happens if the factor is repeated even more times. 

The even powers give touching intercepts with the graph 

getting flatter the higher the power. 

The odd powers give inflection intercepts with the graph 

getting flatter the higher the power. 

With a Casio model, use the Dyna Graph Module (6). 

Eg ploty=(x-1)"



    

y=(r+1)(x=1)'(x-3) 

The red term (repeated twice) gives a touching intercept at 

(-1,0). 

The green term (repeated three times) gives an inflection 

intercept at (1,0). 

The blue term (one only) gives a cutting intercept at (3,0). 

The y-intercept (x = 0) is (0,3). If x>o00, y>+o0, 

  

or,— or 

The actual graph is: 

8 

¥ o { : 
X 

8 

161   

Rational Root Theorem 

When given a higher degree polynomial, it is not always 

easy to find the first zero to begin factorisation. Instead of 
randomly selecting a value from the real number system, you 

can consider using the Rational Root Theorem to identify a 

subset of potential zeros for the given polynomial. 

The Rational Root Theorem states that if 

f(x)=ax"+a, " +. . +ax +ax' +a, -1 

is a polynomial of degree 1, then the subset of potential zeros 

of this given polynomial is 2 where p is the list of the integer 

factors of a and q is the list of factors of a . 

  

a,=-12 so the list of factors p is: {*1,42,+3,%4,46,%12} . 

a, =1 so the list of factors q is: {*1}. 

1,2,3,4,6,12 
Hence, the list of potential rational roots is + i 

This will cut down the amount of 'trial and error’ involved in 

using the Factor Theorem. 

The other way of doing that is to use a calculatore to draw the 

graph: 

  

  

Y31 [—1 
Y4: —1 
Y5: [—] 
Y6 : 
  

    (SELECT) NS RS KT O DR   
      
  

Always remember that you may need to adjust the viewing 

window. Don't sit looking at your calculator wondering why 

it "isn't working" when all that has happened is that the graph 

is off the screen! 
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This suggests that -2 is an intercept and hence (x + 2) is a 

factor of the polynomial. 

If necessary, use G-Solve, or Analyse Graph etc. to identify 

the roots more precisely: 

[EXE]:Show coordinates 

  

In this case, two of the roots appear to be non-integer. 

[EXE]:Show coordinates 
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Sum and Product of the Roots of 

a Quadratic Equation 
The quadratic equation ax* + bx + ¢ = 0 can be rearranged to 

Pabric g 
a a 

Note that the case a = 0 can be discounted as it refers to a 

linear equation. 

Assuming the equation will factorise to (x—o)(x—B) = 0 

we can use the null factor rule to identify the roots of the 

equation as ot and . 

Expanding (x —o0)(x — B)y=o20 gives .rz —(a+PB)x+oap =0. 

If this is to be identical to the original equation, then the 

coefficients of each term must be equal. 

Original equation: 2 ebaE < 
a a 

New version: X (+B)x+af =0 

The coefficients of x* are both 1 and so are equal. 

The coeficients of x: —~(a+f) = 

Q
I
S
 

which implies: (o + B) — ‘the sum of the roots’ = 75 

The constants: 08 - ‘the product of the roots’ = —S 

It is thus possible to make statements about the roots of 

quadratic equations without actually solving them. This 

includes situations in which the equation does not have real 

roots (b* < 4ac). 

  

a Using the sum of the roots = —g and the product of the 
C 

roots = - 
a 

Sum of the roots = —’74 =g



Product of the roots = ;;2 =_6 

b One of the roots is 77’1—0 ~/109 

If the second root is B, then, using the sum of the roots: 

fi+_7-m _ =7 
10 5 

g = _7=d109, 7 
10 5 

_7+4109 14 
10 10 

_ —7+.J109 
10 

Note that this confirms what might have been expected from 

the quadratic formula. 

Exercise B.5.1 

1. Find the sum and product of the roots of each of these 

equations. 

a  FHx+d =0 

b x*3x-7=0 

¢ x-3x-3=0 

2 

d 5% =7x+3: =0 

2 

e 2% +5x=3=0 

f 9l 44x+2 =0 

  

h 5x"+8x =13 

i 4x+1 _ 2y 

4x -1 

2. Given one of the roots of each of these equations, find 

the other. 

2 _ 
a X —=5x+6=0, o =2 

2 

b x-1=0, =1 

2 
c 2x —-7x+3 =0, o=3 

d 6 +x—1=0, o:% 

  

£ 9x2 +2x I v R I 

f 10x°+27 = 33x, a=15 

Theory of Knowledge 

It is not very often that mathematics texts get to recount a tale 

of passion and revenge. 

However, the search for the solutions of polynomial equations 

is such an opportunity and we are not going to pass it up. 

The solution of polynomial equations started with linear and 

quadratic equations which were 'cracked’ quite early on in the 

History of Mathematics. 

However, cubics and higher orders presented a much tougher 

set of problems. 

Some progress had been made in China by Wang Xiaotong 

in the 7th century and by the Persian poet and scholar Omar 

Khayyam (1048-1131), both of whom solved a few cubic 

equations. 

The solution to the general cubic, however, remained elusive. 

In Bologna at the beginning of the 16th Century, it had 

become fashionable for the Universtity to stage problem 

solving competitions. These were a popular 'spectator sport’ 

and drew large crowds. 

Two mathematicians, 

Antonio Fiore and 

Niccolo Tartaglia 

(pictured) claimed 

success with the cubic. 
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The gauntlet was thrown down and a showdown was arranged 

in which cubic equations were to be solved against the clock. 

Tartaglia won. 

At this point, a third 

player, Gerolamo 

Cardano (pictured) , 

entered the fray. 

  

Cardano succeeded in persuading Tartaglia to tell him his 

secret. Tartaglia agreed on the condition that Cardano was 

not to reveal the method to anyone. 

However, Cardano shared the secret with a student Lodovico 

Ferrari with the result that they extended the method to the 

general solution of the quartic. 

What followed was one of the bitterest disputes in the History 

of Mathematics. 

You can read more about these two colourful individuals at: 

and 
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Exercise B.5.2 

  

Sketch the graphs of the following polynomials: 

a Plx) = 

b P(x) = 

C T(x) = 

d  Px) = 

€ P(x) = 

f T(x) = 

g P(x) = 

h P(x) = 

i T(x) = 

j T(x) = 

K P& = 

1 P(x) = 

m P(x) = 

n T(x) = 

o P(x) = 

p T(x) = 

q P(x) = 

T T(x) = 

s T(x) = 

t T(x) = 

x(x—2)(x+2) 

(x=1)(x—3)(x+2) 

(2x-1)(x=2)(x+1) 

(21 a1 

(x=2)(3-x)(3x+1) 

(1-3x)(2-x)(2x+1) 

—x2(x—4) 

(1—4x2)(2x—1) 

(x—1)(x—3)2 

(g 
x2(x+1)(2x—3) 

4x2(x—2)2 

%(x—3)(x+ 1)(x—2) 

—(x—2)(x+2)3 

(x2-9)(3 -x)? 

“2x(x=1)(x+3)(x+1) 

x4 4253 3x2 

la-n@x+2) 4 

—x3(x2-4) 

(Zx—l)(%’fl)(x— 1)(1-x) 

Sketch the graph of the following polynomials: 

a P(x) = 

b P(x) = 

C P(x) = 

x3—dx?_x# 4 

x3 —6x2 + 8x 

6x3+19x2+x -6



d P(x) = —x3+12x+16 5. 

e P(x) = x*—5x2+4 

f P(x) = 3x3—6x2+6x—12 

g P(x) = —2x*+3x3+3x2-2x 

h P(x) = 2x*—3x3-9x2-x+3 

i T(x) = x*—5x3+6x2+4x—8 

j T(x) = x*+2x3-3x2—4x+4 

Sketch the graphs of: 

a)  P(x) = x>—kx wherei k = b2 ii k= —b2. 

b P(x) = x3—kx2 wherei k = b2 ii k = —b2. 

Determine the equations of the following cubic 

functions: 

¥y b y 

\ ; 
=3 1 

8 = 

  

  

o 

—
 

' 

&   

  

Answers 

ACTOR"AND REMAINDER | HEOREMS    
Determine the equation of the following functions: 

    

Sketch a graph of fix) = (x—b)(ax?>+bx+c) ifb>0 

and: 

a b2 —4ac = 0,a>0,¢>0 

b b2 —4ac>0,a>0,¢>0 

C b2 —4ac<0,a>0,¢>0 

a On the same set of axes sketch the graphs of 

fix) = (x—a)? and g(x) = (x—a)?. 

Find {(x,») 1 f(x) = g(x)}, 

b Hence find {x: (x—a)*>(x—a)?}. 
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Functions and Vectors 

In the next section, you will study vectors and their properties. 

This section will only make sense after you have completed 

Chapter C11. 

) Vectors are expressions of the type: 

—
 

Polynomials are expressions of the type: 

P(x)=2x"-32"+4x+1 

We have chosen the coefficients of the polynomial to match 

that of the vector. 

The two items (vector and cubic polynomial) are not the 

same, but they do have similar forms. 

Are the concepts and techniques of vector mathematics 

applicable to polynomials? This is a fascinating question! We 

will look as two aspects only. 

1. Dimension 

The dimension of a vector is the number of components. 

2 
The vector | _3 

4 

has three components. 

It is said to be a three dimensional vector and it can be 

represented geometrically in our 3-dimensional space. 

Thus, quadratic polynomials can be thought of as being 

3-dimensional as well. 

Since there is no limit to the number of terms in a polynomial, 

the vector space occupied by them is of infinite dimension. 

What does this mean? 
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2. Angle 

The angle between two vectors is related to their scalar 

product. If the scalar product of two vectors is zero, then they 

are at right angles to one another. 

For example: 

2 2 

1 [o] =1 [=2x2+1x—1+(-1)x3 
-1 3 

=4-1-3 
=0 

2 2 
This implies that the vectors 1 and | —] | areatright 

angles to one another. -1 3 

But what of the associated polynomials? 

Is there any sense in the statement that: 

P(x)=2x*+x—1 isat right angles to Q(x)=2x"—x+32 

There are some calculus based (definite integral) definitions 

of scalar product that have proved useful. How do these work?



    
The Rational Function 

Rational functions take the form: - Graphs 

of this nature possess three types of asymptotes, one 

vertical another horizontal and thirdly, diagonal. 

1.The vertical asymptote 

ax+b 

a+d 
  Firstly consider functions of the form: y= 

A vertical asymptote occurs when the denominator is zero, 

that is, where cx + d = 0. Where this occurs, we place a vertical 

line (usually dashed), indicating that the curve cannot cross 

this line under any circumstances. This must be the case, 

because the function is undefined for that value of x. 

For example, the function 

H3x+1 

2x+4 
  

is undefined for that value of x where 2x + 4 = 0. That is, the 

function is undefined for x = -2. This means that we would 

need to draw a vertical asymptote at x = 2. In this case, we 

say that the asymptote is defined by the equation x = -2. 

Using limiting arguments provides a more formal approach 

to ‘deriving’ the equation of the vertical asymptote. The 

argument is based along the following lines: 

Ixk-1 

'2x+4 

That is, as x tends to -2 from the | 

left or ‘below’ (hence the minus | 

sign next to the two) the function 
tends to positive infinity. 

asx—-2"   — +oo |y —>+oo 

   

That is, as x tends to -2 from the 

right or ‘above; (hence the plus 
sign next to the two) the function 
tends to negative infinity. yi=e 

  

Therefore we write: 

5t o) X = -2 
Apa=rt i }is a vertical 

  

As x > -2~ f(x) > +oo) asymptote 

3x+1 
of f(x)= SAE=D. 
S 2x+4 

2.The horizontal asymptote 

To determine the equation of the horizontal asymptote, we 

use a limiting argument, however, this time we observe the 

behaviour of the function as x->=+eo. 

It will be easier to determine the behaviour of the function 

(as x>+eo) if we first ‘simplify’ the rational function (using 

long division): 

    

Next we determine the behaviour for extreme values of x. 

N
2
 

As x — +oo f(x) > (%)* Therefore, y = 

) 3+ [ 1s the horizontal 
As x = —co fx) = (3) | asymptote 
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We can now add a few more features of the function: 

3, Axial intercepts 

x—-intercept 

To determine the x-intercept(s) we need to solve for f(x) = 0. 

In this case we have: 

m)zzii:0@3MW:0®x:*a   

That is, the curve passes through the point (*é 0] : 

y-intercept 

To determine the y-intercept we find the value of f{0) (if it 

exists, for it could be that the line x = 0 is a vertical asymptote). 

3x0+1 _ 1 
2x0+4 4 

Therefore the curve passes through the point (0,'/,). 

In this case we have f(0) = 

Having determined the behaviour of the curve near its 

asymptotes (i.e. if the curve approaches the asymptotes from 

above or below) and the axial-intercept, all that remains is to 

find the stationary points (if any). 
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The vertical asymptote is at x = 1. Just to the left of the 

asymptote (e.g. at x = -1.1) the numerator is negative and 

the denominator small and negative. The y value is large and 

positive. Just to the right of the asymptote (e.g. at x = - 0.9) 

the numerator is negative and the denominator small and 

positive. The y value is large and negative. 

The horizontal asymptote occurs when x is large. When this 

happens, y tends to -3. For a big negative x (e.g. x = -100), 

y ="/, i.e.abit smaller than -3 (above the asymptote). For 

a big positive x (e.g. x = 100), y = **'/  i.e. a bit smaller than 

-3 (below the asymptote). 

Intercepts: 

1 
x interceptat 3x+1=0= X:_S 

3%0+1 
1-0 

yinterceptat y= 1   

The sketch should show all the important features: 

  

Modern graphic calculators will produce quite good plots 

of rational functions. They do not, however, show the key 

features which a good sketch must include. 

  

10 . 1 10| 

3 k1)t 
1-x 

-6.67 

          

 



Exercise B.6.1 

Extra questions 

Use a limiting argument to determine the equations 

of the vertical and horizontal asymptotes for the 

following. 

    

  

a f(x)zzj:ll b f(’-’)=3;j:f 

2x=1 _4-=x 

) f(x):4x+l g f(x)7x+3 

5 L 1 
e f(x)=3 T f /(x):S—; 

Make use of a graphics calculator to verify your results 

from Question 1 by sketching the graph of the given 

functions. 

Sketch the following curves, clearly labelling all 

intercepts, stating the equations of all asymptotes, 

and, in each case, showing that there are no stationary 

points. 

  

  

  

3 X'_)x+1 

a 2x+1 b x+2 

5-x 1 
c x> d X 3+— 

2x=1 # 

1 2 f e o 2 e xb—)x_3 2v—3 

The figure at below shows part of the graph of the 

function whose equation is: 

ax+2 

x—c 
X P 

Find the values of a 

and c. 

  Given that fix =x +2 and that gix~ 1 , sketch 
x—1 

the graphs of: 

a  fog b gof. 

    

Quadratic Numerator 

This section will deal with functions of the form: 

/(%) 
_ax’+brtc 

dx+e 

    

As with the examples we have already dealt with, the value of 

x that gives a zero denominator (1) will give rise to a vertical 

asymptote. 

  

  
It can also be helpful to work out the behaviour of the graph 

just either side of the asymptote - it will either be large and 

negative or large and positive. 

If x is just less than 1: y= 

If x is just more than 1: y= 

) 

)+ 
+ 

- large and positive. 

) - large and negative. 

The zero(s) of the numerator can also be added at this time as 

these give the x-intercepts. 

(r=2)(x+1)=0>x=-12 

The y-intercept: y 
=(0—2)(0+1) —2x1_ 

0-1 -1 
2. 
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Whilst this makes the shape of the graph in the vicinity of 

the origin fairly obvious, the behaviour for large positive and 

negative values of x is still unclear - other than that the values 

of y will be large. This is because the quadratic term is in the 

numerator. 

A polynomial division will make things clearer. 

(x-2)(x+1) x*-x-2 

Fi—=1 x—1 

X 

x=1|x-x=2 
2 

X —-x 
  

-2 

From this we can conclude that: 

_ (x—2)(x+l):X7i 

=1 x—1 

If x gets large (either positive or negative), the remainder term 

becomes small and the function behaves more and more like 

v =x . This line can now be added as an oblique asymptote. 

If x is large and negative, the remainder term is positive and 

the graph will be above the asymptote. 

If x is large and positive, the remainder term is negative and 

the graph will be below the asymptote. 

If all this information is transferred to the graph, the shape 

becomes much clearer. 
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The final sketch should show all the key information. 

This means that it should have the correct shape. 

The coordinates of the intercepts should be given. 

The equations of the asymptotes should be given. 

0,2) 

  

  

: (2,0) x 

    
  

 



Intercepts: 

_(0-1)(0+1) _1 
RS0 2 

y=0: gM:OE(X—I)(xi—I):Ofix:—J,I 
22 

Vertical Asymptote: 

The denominator is zero: x = 2 

() 

() 
+ 

To the left of the asymptote: y= 

To the right of the asymptote: y=   =+ 

Diagonal Asymptote: 

After division: y= (=D +1) —x+24+—— 
w=2 x=2 

There is a diagonal asymptote of y = x + 2. 

The remainder term is negative for large negative x so the 

graph is below the asymptote at the left. 

The remainder term is positive for large positive x so the 

graph is above the asymptote at the right. 

These key facts translate to a graph: 

Td F 

  

  
On this occasion, it appears that there are two turning points. 

These can be found using calculus (the quotient rule): 

dy _x'—4x+1 

v (xr—2) 

Equating the numerator to zero: x=2+ NE) 

The turning points are (Zi \/5,4i2\/§) 

or approximately: (0.27, 0.54) and (3.73, 7.46) 

y 4 

    
’;"\(2+\/§,4+1\fi) 

  

0,05)].-"1 (2-V3.4-243) 

- \/ 

  

  AR 

= 

  

There is a vertical asymptote at x = 2 (zero denominator). 

Pr=A-a) i L Division gives: y= 5 3 
= A= 

There is a diagonal asymptote ( y=-2x+1) that intersects 

the vertical asymptote at (2,-3). 

The point (2,-3) is a centre of two-fold rotational symmetry. 
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Quadratic Denominator 

This section will deal with functions of the form: 

ax+b 

o’ +dr+e 
S(x)= 

The techniques needed to sketch these are similar to those 

used in the previous section. 

  

Vertical Aymptotes: 

These occur when the denominator is zero: 

(x+1)(x-2)=0=xr=-1,2 

  To the left of -1, }/_— 
(=)=) 

—, to theright y= (+- 

To the left of 2, y= =+, to the right }fi%:— . 
()() 

Other Asymptotes: 

Because the numerator is linear and the denominator is 

quadratic, we expect that, for large x values, y becomes small. 

For large negative x, y o0 

We can expect the graph to approach the x-axis from below 

to the left. 

- + 
For large positive x, y= =+ 

(+)(+) 
  

We can expect the graph to approach the x-axis from above 

to the right. 

82   

Intercepts: 

y=0=2x-3=0=>x=3 

0-3 -3 
=0= y=——————=—=15 

* 7 (0+1)(0-2) -2 

On a set of axes, these are: 

e
 
X
 

e
 

e 
i
e
e
e
a
e
 T 

T
   

It appears that there must be a minimum point between the 

asymptotes and a maximum point in the region of x = 4. 

dy  —x'+6x-5 
Using the quotient rule: ~—=—— _——~ ~_ 

gihed T P 

dy _ —x'+6x=5 
= =1,5 ie. (1,1) & (5,'/s). 

& (el (x—2p " ’ 

  

(1.1 
  

  

 



    

Vertical Asymptotes: 

x'-x-6=0 

(x+2)(x=3)=0 

xr=-2,3 

However, for x = 3, the numerator is zero as well. There 

is therefore a 'hole' in the graph at this point and not an 

asymptote. 

For large negative x, the graph approaches the x-axis from 

above. 

For large positive x, the graph approaches the x-axis from 

below. 

Intercepts: 

x=0, p=——— = 

  

x
=
-
2
 

  

  

Exercise B.6.2 

1. Sketch the graphs of: 

  

  

  

. _x(x-1) 
XH2 

5 _x=1 

7 x+2 

X +3x+2 
c = 

A= 

(2-x)x 
d = 

» x+1 

2 Sketch the graphs of: 

a X 

TGy 

x—4 b e AT 
P ) (x-2) 

- _ lI=2x 

(x+2)(x-1) 

3-2x 
d === 

# 6x'—x—1 

3. State the equations of the asymptotes of the graphs of 

these functions: 

. - xi—x-3 

& x+4 

b y = ! 
¢ 2x ==l 

4-x 
c = 

x +x-2 

4 _ X xr—2 

= 
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Find the value(s) of a such that the graph of: 

2x+3 

ax’ —2x+3 

has exactly one vertical asymptote. 

Find the coordinates of the centre of symmetry of the 

graph of: 

7,{1—3,1’—4 

¥ =1 

Find the value of a such that the graph of: 

_ 2x+7 

I P rxta 

has asymptotes y=0,xr=-4,3. 

Sketch the graph. 

Find the value of a such that the graph of: 

_ X tax+3 

x+3 

has y=.x—7 asanasymptote. 

Find the value(s) of a such that the graph of: 

_P4Tx+5 
ax—1 

has no vertical asymptote. 

If f(x)= #}Zw , sketch the graphs of: 

a r=f(x) 

b =) 

< =/ 

10. 

1. 

13. 

Answers 

Find the coordinates of the centre of symmetry of the 

graph of: 

:(x+a)(x—1) 

x—a 

The unit profit ($p,000) of a new electronic component 

depends on the weekly output (1 thousands). 

The expected unit profits are modelled by: 

587—30 
= n>0 
(n+4)(n+1) 

Use a graphical method to find the optimum output. 

The pressure (p) at time ¢ after an impact is modelled 

by: 

5¢+2 
e tlLl<#<7 

(2=1)(#-7) 

Use a graphical method to find the maximum pressure 

and when this occurs. 
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Functions can be classified into three categories based on 

the symmetries of their graphs. 

If a function has line symmetry about the y-axis, it is said to    be even. 

1 T The concept applies to other, non-polynomial functions. 

The cosine function is even, the sine function is odd and the 

logarithm function is neither. 

Not every function is either odd or even. Most functions are 

Formally, ( for all x in the neither. 

domain. 

The most obvious examples of even functions are the even 

polynomials, x, x*... Other examples are |x|, cos(x). 

    

A function is odd if it has two-fold rotational symmetry about 

the origin. If the graph is ‘pinned’ at the origin and turned 

through 180°, it will fit back over the original graph. 

Formally, for all x in the ‘ 

domain, e.g. x, x*, sin(x). 
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a 

C 

  

Neither odd nor even. 

Odd 

Even 

Exercise B.7.1 
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Classify the following functions as even, odd or 

  

neither. 

a y=4 

3 
C y=(x-1) 

2 
e y = In(x") 

yi = \‘Z+ 2 g y= 

Y3+l 

f 

      
X 

  

  

i = sinx + .\’3 

COosx 

2. Prove that the product of two even functions is even. 

3 Is it necessary for /(0)=0 for a function to be odd? 

4. Explain why the composite of two odd functions is 

odd. 

5 Prove that the quotient of two even functions is even. 

6. A function has the full real line as its domain and is 

both odd and even. What is the rule for the function? 

Identity and inverse functions 

The main stages of finding an inverse function were covered 

in Chapter B2 of the SL text. 

We begin with an example to review the key techniques. 

  

The first step is to write this as a 'y =' statement. 

  _2x-3 

5 

Next, invert the function by exchanging x & y. 

2y— 

r=22= 2 
5 

Then, make y the subject: 5x=2y-3 

2y=5x+3 

5x+3 

- 2 

5x+3 
SN (x)= 5 ,xeR 

  

 



  

  

      
The original function is blue, the inverse is red and y = x is 

the symmetry line between a function and its inverse. There 

is also a common point between the three lines. 

If using a graphic calculator it is a good idea to use one of the 

'square’ options for the axes - this makes the symmetry line 
at 45" to the axes. 

The domains of both the function and its inverse are the full 

real line. 

Finding inverses is seldom as simple as the previous example. 

There are two problems. The first is that the inverse of many 

to one functions is not a function and the other relates to 

domains. 

  

p=(x—4)+2, so the inverse is: 

x=(y—4)1+2 

x~2:(}/~4) 

JE:;H; 

y=+m+4 

The positive sign in front of the square root indicates that the 

negative option of the square root is excluded. 

2 

This converts the expression to a function. 

The issue of domain also relates to the fact that we cannot 

have a negative value inside the square root. It follows that the 

domain of the inverse is x > 2. 

    URTHER*FUNCTIONS 

Graphically, this is: 

B (Cnelbed 
  

   

  

      

If the original function is to have an inverse its domain has to 

be restricted to the right hand 'limb’ of the curve: 

Fx)=(x—4) +2,x24 

S x)=+Jxr—2+4,x22 

  

The question does not ask for the actual rule of the inverse, 

so it can be tackled graphically. The graph of f, including the 

domain restriction is: 

  

The inverse will only be a function if it is either one:one or 

many:one. We therefore need to look for parts of the graph of 

the original function where it is one:one. This happens either 

to the left of the minimum point or to its right. The minimum 

point is (=3,-6.5) - use calculus if necessary. 

This can be achieved either by choosing the part for which: 

f[-4,-3]>[-6.5,-6] or f:[-3,1]>[-6.5,1.5]. 
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The second of these options is graphically: c 

  

  

2. Restrict the domains of these functions so that the 

inverse is a function and show the result as a graph. 

  

a 
y 

(A e e o U RN e | ] 

Exercise B.7.2 

L Sketch the graphs of the inverses of these functions: * 

a y 

b 
y 

) /\ 

x   
/_ 3 Find the rule for the inverse of: 

f(x)=+x—1,x21 stating its domain. 

4, Find the value of a such that function: 

f(x)=x*-4x+7,x€[a,20] has a well defined 

inverse.   5. If f(x):ez"",xe]R , find the inverse function, 

stating any domain restrictions. 
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5 If f(x)=2"-3,x€R, find the function g such that 
fog=x. 

7. Find the value(s) of p such that f(x)=ip,x>0 is 
self inverse. # 

8. The function: 

f(X)=Sin(7;—x),xe[—a,a] 

has a well defined inverse. Find the value of a. 

Solving equations 

In all cases, if an equation is solvable by an analytic methods, 

then it is best done that way. But with care! 

  

An analytic solution might proceed as follows: 

Vax-1=2x-7 

2x-1=2x-7) 

2x—1=4x"-28x+49 

0=4x"—-30x+50 

Using the quadratic formula: 

2x4 

30£+/900—4x4 x50 

- 2x4 

30++/100 

  

We must be careful about which of these solutions to choose. 

Remember that, in the sphere of functions, square root means 

'positive square root'. 

Testing the smaller solution by substituting it in the equation: 

/2x§—1=2xi—7 
2 2 

Ja=5-7 
This is only true if we take the negative value of the square 

root and so this value does not count as a solution. 

Testing 5 gives: 

V2X5-1=2%5-7 

J9=10-7 
which is true. 

A graph will clarify the position. 

  

Mixtures of polynomial functions and ‘other’ functions in 

equations generally do not yield easily to analytic solutions. 

By 'other’, we mean a whole range of logarithmic, exponential, 

trigonometric etc. functions. As these appear frequently in 

applications, non-analytic solutions are an important part 

of mathematics. In this section, we will look at graphical 

methods. 

  

  

  

  

        

x=1.5793. 
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Exercise B.7.3 

1. Find the values of x for which f{x) = g(x). 

  

Co
st
 

($)
 

Rank Taxis — 
Rick Shaws — 

  

5 10 15 20 25 

Distance (km) 

The dots and rings on the green graph are significant when 

answering this question. It looks like there is nothing to 

choose between the two companies for a distance of 5 km. 

However there is a ring' on the green graph indicating that the 

point is excluded - so Rank Taxis are better for this distance. 

The cheapest options are: 

O<distance<10 km: Rank Taxis. 

10 km, both companies charge the same. 

10<distance<15 km: Rick Shaws. 

15 km, both companies charge the same. 

15<distance: Rick Shaws 

  

Video of calculator solution of: 
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  f(x):\/%,aoz 

g(x)=2-x,x>0 

flx)=x"-1,x>1 

g(x)=vx-1Lx>1 

f(x)=log,,(x+1),x>0 

g(x)= i,x>0 

f(x)=2",xeR 

g(x)=3",xeR 

f(x)=(x-1),xeR 

g(x)=5-x,xeR 

S(x)=x+Lx>0 

g(x)=2x-5xeR 

1 
f(x)=x+\/;,x>0   

g(x)=(x+1), reR 

Jf(x)=cosx,0<x <§ 

g(x)= Jx, x>0 

f(x)=e¢",xeR 

g(x)=x*-3,eR 

f(x):ln(%],x>0 
X+ 

g(x)=3-x,xeR



The concentration of reagent A in a reaction mixture 

is initially 340 g/L and decreases by 10% per hour. The 

initial concentration of the product (B) is zero and 

rises by 25 g/L every hour. 

a Write functions to represent the concentrations 

of A and B at time . 

b When will the concentrations be equal? 

An investment of $10 000 is placed in a deposit account 

that pays 6% annual interest compounded monthly. 

a Write a function that models the amount of this 

investment ¢ months after it is placed. 

b When will the value of the investment reach its 

target of $12 5007 

Find the value of a such that if /(x)=4" and 

g(x)=x" then /(3)=g¢(3). 

The diagram shows a unit circle. 

a Find a function that gives the area of the green 

triangle in terms of 6. 

b Find a function that gives the area of the shaded 

sector (red and green) in terms of 6. 

c Find a function that gives the area of the red 

shaded segment in terms of 6. 

d Write an equation that gives the fraction of the 

area of the circle occupied by red segment. 

e When does the segment occupy one quarter of 

the area of the circle? 

  

Two functions are defined as follows: 

A(x) is alogarithmic function of the form: 

A(x)=axIn(bx) with these values: 
  

% 1.0 1.5 2.0 2.5 3.0 

A(x) | 3.140 | 4.113 | 4.804 | 5.339 | 5.777 
  

                

B(x) is an exponential function of the form: 

B(x)=c" with these values: 
  

x 1.0 1.5 2.0 2.5 3.0 

B(x) | 1.600 | 2.024 | 2.560 | 3.238 | 4.096 
  

                

a Find values of @ & b and hence define A(x). 

b Find value of ¢ and hence define B(x). 

c Find the value of x such that A(x) = B(x) 

How long will it take for $1 000 invested at 6% annual 

interest compounded monthly to exceed $1 100 

invested at 6% annual simple interest. 

If a fixed mass of gas is kept at a constant temperature, 

its pressure (p) and volume (v) are relared by Boyle's 

Law: pv = constant. 

If, however, a fixed mass of gas is suddenly compressed, 

the temperature rises and the pressure is, as a result 

larger than it would have been at constant temperature. 

This sort of sudden compression is commonplace in 

engines and other sorts of machinery. 

In these cases, Boyle's Law is often amended to pv’ = 

constant. y is also a constant. 

Here are some experimental measurements 

  

0.7 1.5 1.9 2.3 3.6 

v 3.60 1.68 1.33 1.10 0.70 
  

                

Find the value of y. 

[EI AL [E]   

  
    

Answers 
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CHAPTER B 

  

The idea of a function is very general. In school mathematics 

texts, it is usually confined to rules such as: 

fl)=x*-x+2 

as we have been discussing. 

In these, the domains and ranges are real numbers. This need 

not be the case. 

Every human being has a blood type (O, A, AB etc.). The 

'function' that has as it domain {all the people on Earth} and 

which returns that person's blood type is a well defined many 

to one function that can be very important to those who need 

a transfusion. Yet it is not expressible as an algebraic rule. 

Asasecond example, every credit card in the world is identified 

by a number (often with sixteen digits). This number is linked 

to the account that the bank keeps of the transactions. The 

rule connecting these two attributes is, in a very real sense, 

a function. It needs also to be a one to one function if the 

banking system is not to collapse in chaos. However, it is a 

function that is not expressed as an algebraic rule. Rather, it 

is a list of pairs (card number, account number) stored in a 

computer. 

The connection between a credit card and the associated PIN 

number is more subtle and students are encouraged to read 

about it. An internet search using ' Public key cryptography' 

will get you started. 

The notion of a function is even wider than this. In the last 

section of this course, you will be introduced to Calculus. 

This is a branch of mathematics which transforms functions. 

You can think of it as functions that have functions as their 

domain. 

There is also a class of 'functions’ that use shapes and objects 

as the elements of their domain. 

These take a shape and transform it into another shape using 

a single mathematical rule (i.e. function). 

92   

Joukowsky transformation 

As an example, we will look briefly at a 'function’ known as 

the Joukowsky transformation. 

. il 
This has the rule f(z)=z+—. 

Z 

The variable z is taken from the set of complex numbers. 

Since functions of complex numbers do not form part of 

this course, we will not go into details but concentrate on the 

broad picture. 

If we take a unit circle as the element of the domain, the 

Joukowsky transformation changes it in a way depicted below: 

f 

o   
The result is known as the Joukowsky aerofoil. It turns out that 

it is not the best design for an aeroplane wing. However, the 

ability to use a mathematical process that can take a simple 

shape such as a circle and convert it to a much more complex 

and useful shape is valuable. It can, for example, be used to 

send precise instruction to robotic milling machines.



The Absolute Value Function 

The absolute value function is defined as 

That is, sketch the graph of y = x for x > 0, and then sketch the 

graph of y = —x for x < 0. 

Similarly, the function f{x) = |ax + b| , represents the absolute 

value of the linear function y = ax + b. 

    
  

  

Example B.8.1 

Sketch the graphs of: 

a 

b 

  

y=lx-2| 

y=lx+1 

y=[2x+1] 

   

  

Parts a and b are best done by considering the functions as 

translations of the basic absolute value function. That is, the 

graph of y = |x - 2| is the graph of y = |x| translated two units 

to the right. 

The graph of y = |x| + 1 is the graph of y = |x| translated one 

unit vertically up. So, we have: 

  

c y=[2x+1| 

This function can be seen in two parts: 

If2x+1200rx=-"/5,y=2x+1. 

If2x+1<0o0rx<-Y5,y=-2x+1)=-2x-1. 
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CHAPTER B:8 

A transformation would also work but you must factorize OPTN, F5 NUMERIC, F1 Abs. After ‘pasting’ the Abs 

first to get: command, enter the equation as shown on the screen. 

y=lax+1= 2(’”'1}1 Then select the equation (EXE) and F6-DRAW. 

rap 
Shift the graph of y=|x| horizontally left by % and stretch YiBAbs (3-2x) [—1 

along the y-axis by factor = 2. 
: ==l 

If you multiply/divide and add/subtract from a variable x 

then you must factorize first to get the right graph. 

  

    

  

  

  

  

      
  

  

From the given graph, the range is defined as {}/ s y20}. 

b As before, we enter the required options and obtain 

the following: 

      

   

   

   

    

Video discussion 
  

  
    Notice that in fact, all we have 

done in part ¢ is to sketch the 

graph of y = 2x + 1, and then 

reflect (about the x-axis) any 

part of the graph that was drawn 

below the x-axis. We can also 

make use of graphic calculators 

to sketch graphs of absolute 

value functions: 

  

  

        
  

Range is defined as{y: }/2~2} or [-2.e0). 

a Use the GRAPH module. The abs( option is usually 

found under a MATH menu. CASIO have this under 
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a [3=24|=2 y=2is the red horizontal line. It intersects 
with the blue graph in 2 places. There are 2 solutions. 

b [3-24=-15 y = -1.5 is the green horizontal line. 

It does not intersect the blue graph. There are no 

solutions. 

c [3=24/=0 y = 0 is the magenta horizontal line. It 

intersects with the blue graph in 1 place. There is 1 
solution. 

  

Using the graph from Example B.8.2 b. 
  

  

a
1
 

S0 5 % Gl T 2 % 4 3   
  

a no solution: p < 2. 

b infinitely many solutions: p = 2. 

c two solutions: p > 2. 

Using the graph from Example B.8.2 ¢, k = -2. 
  

      

  

  

          

Inequalities and Inequations 
The terms inequality and inequation are similar. Inequation 

usually refers to a statement such as x + 2 > 7 where one 

quantity is bigger than or equal to another. Inequality usually 

refers to a statement such as x + 2 > 7 where one quantity is 

strictly bigger than another. 

Solving an inequality means that we find ALL possible values 

for which the inequality holds, all values which satisfy the 

inequality. 

Inequalities very often have infinitely many solutions. 

Therefore solutions cannot be checked by substitution. 

If equations are like a child's seesaw in balance, inequations 

are like unbalanced seesaws. 

x T I 4 { 
x+1 > 3 

Equations are solved by maintaining the balance In the case 

of our example, subtracting 1 from both sides simplifies the 

problem and leads to a solution. Much as subtracting one 

from both sides of a balanced seesaw maintains the balance, 

the same process leaves an unbalanced seesaw unbalanced. 
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For this reason, solving inequations is similar to solving 

equations. With one major exception. 

Major issues you have to pay attention to when solving 

inequalities: 

Multiplication/division by a negative number reverses the 

inequality. 

It is true that 7 > -4. 

However, if we multiply both sides by -2, we get -14 > 8 
which is false. The statement does become true if we reverse 

the sign: 

7 > -4 (multiply by -2) = -14 < 8 

The same is true of division by a negative number. 

  

a 2x<3x+4 Subtract 3x from both sides 

—x<4 Mutiply by -1 and reverse sign 

x>-4 

b 5x-6>-4x+3 Add 4x to both sides 

9x-6>3 Add 6 to both sides 

9x>9 Divide both sides by 9. 

x>1 

No sign reversal is necessary. 

Tl L D R st T e ) 

Reciprocals 

Care is needed with inequations involving reciprocals. 

It is true that 3 > 2. But what if we take the reciprocals of both 

sides? 

1.1 
—>— s false. 
3 2 

: 1 1. 
-3 < -2 isalso true, but —— <_5 is false. 
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If taking reciprocals, when both sides of the inequality are 

positive or both sides are negative then the inequality reverses. 

  

a We are going to represent on a number line how the 

numerator and denominator change sign as x varies. 

Let us check when the numerator is positive (5 - x 2 0) 

Numerator > 0 

  
<+ 

T T T T T T T T T T T 
-10 -5 0 5 10 

‘We do the same with the denominator: 

If2x + 1 >0 then 2x > -1 and x > -%. 

Denominator > 0 

Numerator > 0 
  thv»7111||||rw||§1711117 

o—e 

Fraction > 0 

The whole fraction is positive when both the numerator 

and denominator are positive (red interval). 

The case when both numerator and denominator are 

negative (x < —% and x > 5) has no solutions. 

The final solution is -% < x < 5. 

b We begin by collecting terms and leaving zero on one 

side: 

1 1 
——>4=——4>0 
x4 x—4 

Next, make the left hand side a single fraction: 

L 4(x-4) 

x—4 x-4 

Iodfe=a) 
x—4 

1~4x+16>0 

x—4 

17—-4x 

*—4 

>0 

0 

  >0



Using a number line: 

Denominator > 0 
3 

Numerator >0 

TR e T T T L T T   

o—0 

Fraction>0 

Solution 4 < x < 4.25 

It is a good idea to back up your algebra with a 

graphical approach. Enter both sides of the inequation 

as separate functions: 

Graph Func :Y= 
Y1E1+(x—4) [—1 
Y2E4 [—1 

  

[EXE]:Show coordinates 
Yi=1+(x-4y 
Y2=4 

    

  
1 

INTSECT     
Hfi 

X=4.25 -25| =4 

1 1 
—> 
2 2x—1 

    
  

Collecting terms as before: 

1 1 

20-1 x 
0> x _ 2x—1 

x(2x-1) x(2x-1) 

x—(2x-1) 

x(2x-1) 

1—=x 

x(2x-1) 

0>   

0> 

0> 

We are going to see how the denominator changes sign 

by looking at the graph of y = x(2x - 1). 

    

     

Denominator x(2k-1)> 0 

x(2x-1)< 0 

  

    

Combining this result with the sign changes of the 
numerator (1 - x). 

Denominator 
x(2x-1)>0 <0 x(2x-1)>0 
e s 

Numerator < O’ 

D S i 
=2 =1 0 1 

cr OO ceemmeemmenaaae » 

Fraction>0 <0 >0  Fraction<0 

Solution0 < x< Y2 orx>1 

Numerator > 0 

  

This is confirmed by the graph. We are looking for 

intervals in which the blue graph is above the red. 

  

| | | 
1 

| 
| 

  

      
Note: If the sides of the inequality have different signs then the 

inequality sign remains the same when taking the reciprocals 

of both sides. 

Example: If -2 < 3 then -%2 < '/5 

Squares and square roots 

On squaring both sides of an inequality: The inequality sign 

does not change when both sides are positive or both sides 

are negative. 

Example: 3 > 2 then 3% > 22 but -2 < -3 then (-2)* > (-3)* 

Taking the root of both sides of an inequality: You have to 

make sure that both sides of the inequality are non-negative 

before taking the roots of both sides. The inequality sign does 

not change. 

Remember the difference between the two functions: 

S )= Ja? =|a],xeR and g(x)= (\/;)1 =x,xeRy. 

y y=fix) y y=g(x



PR e 

  

x*> (x - 3)* then \/?>\/(x—3)2 which leads to []>[x—3]. 

This is true for x > 1.5. 

  

Summary 

Ifa>band ceR thena+c>b+canda-c>b-¢ 

Ifa>b and ceR" then axc¢>bxcand £>£ 
c c 

Ifa>b and ceR™ then axc<bxcand £<é 
c 

Ifa>band @,6€R" then l<l 
a b 

Ifa>b and 2,6€R" then l>% 
a 

Ifa>band @,6€R" then a* > b? 

Ifa>b and @,6€R thena’ < b? 

Ifa>band 2,6€R" thenVa >V& 

Modulus Inequalities 

The simplest types of inequalities are shown in the table. 
  

  

|A]<0 |A|<0 |A]>0 |A]20 

solution no A=0 A%0 AeR 
solution 
  

  

lal<2 [ |ajz2 | jap2 | A2 
  

no no 

  

  

  

solution . . AeR AeR 
solution | solution 

|A|<3 |A|<3 |A|>3 |A]23 

3<A 3<A 
solution | -3<A<3 | -3<A<3 

A<-3 A<-3               
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There are two choices: 

  

  

-2x+4<-3 -2x+423 

FirstCase -3 3 Second Case 

T T TTT LT T T T I T T T L T T 
-10 -5 0 5 10 

-2x+4<-3 -2x+423 

= -2x<-7 =-2x2-1 

=x27/, =x<% 

Solution: (=ee, %] U [7/,%0) 

Alternative solution: 

Squaring both sides of the inequality will not change the 

inequality sign since both sides are non-negative. 

|[-2x+4[ >3 

Using that we can change the modulus inequality for a 

quadratic inequality. 

(-2x+4)'>9 

4x'=16x+720 

This is a 'vertex down' parabola. Solving for the x-intercepts: 

. —(=16)++/(-16)’ —4x4x7 

- 2x4 

164144 
8 

  

y 

  
Solution: (=ee, ¥2] U [7/3,0)



S 

A third method is graphical. 

First enter the two relevant functions: 

i 
unc ‘Y= 

EAbs -2x+4) [—1] 
fe—r] 

Looking at the sense of the inequation (Y1>Y2), we will be 

looking for intervals for which the blue graph is above the 

red. 

:Show coordinates 

  

It may be necessary to locate intersection points. In this case, 

(0.5,3) is highlighted. 

Solution: (~eo, %] U [7/5,00) 

  

a -1<5-2x<1 

-6<-2x<-4 

3> x> 2 satisfy the inequality. 

b |[2x-1]-3]>2 

There are two cases: 

Case A: [2x-1]-3>2 

Case B: [2x-1]-3<-2 

VIDDULUS FUNCTION"AND SOLVING INEQUALTIES 

  

   

  

  

Case A Case B 
< ° © > T T T T T T T T T T T T T 

-10 =5 =2, 0 2 5 10 

[2x-1]-3<-2 [2x-1|-3>2 

2x-1|<1 [2x-1]>5 

-l<2x-1<1 There are two choices: 

0<2x<2 2x-1<-5 2x=1>5 

0<x<1 2x < -4 2x>6 

x<-2 x>3 

T T I LT T T LT T T L T   

Solution: x < -2,0<x < 1,x> 3. 

[|3x - 5|+ 4| <7 

~7<|3x-5|+4<7 

-11<3x-5/<3 

-11 < |3x - 5| is true for all values of x. 

|3x - 5| < 3 is satisfied when -3<3x-5<3 

o«
 

Therefore the solution of the inequality is %5 x<— 

w 

[ -3x+2|=3x-x"-2 

|x? - 3x + 2|=-1(x* - 3x + 2) 

holds when x> - 3x + 2 < 0. 

(x-1Dx-2)<0 

Solution is: 1 < x <2 

|x* = 2x - 3| < 3x - 3 Before tackling this algebraically, 

we will look at it graphically: 

raph Func = 
Y1BAbs (x2- 2x 8) =1 
Y283x-3 =3 
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CHaPTER B8 

  

    nt 7 
  

We are looking for the interval(s) in which the red 

graph is above the blue. G-Solv gives the intersection 

points as (2,3) and (5,12). This suggests that the 

solution is the interval 2 < x < 5. 

Algebraic solution: 

x*-2x-3=0givesx, =-1 andx,=3. 

5 2 —2x-3,x<-lor3sx 
X =2x-3= 5 

—x +2x+3,-1<x<3 

We must consider three cases: 

Case 1 Case 2 Case 3 
x<-1 -1<x<3 >3 

  4TrTrTTrTTTTrTrT T rrr o> 

Casel: x<-1 

If x < -1 then we must solve x* - 2x -3 < 3x -3 

X -5x<0 

x(x-5)<0 

0<x<5 

  

None of these values fall into the interval of x < -1 

therefore this case does not provide us with a solution. 

Case2: -1<x<3 
71 yx 4 2+ 3) 

If -1 < x < 3 then we must 

solve —x* +2x+3 <3x-3 

x> -x+6<0 

  

x < -3, 2 < x We must choose those values which fall 

into -1 < x < 3. These are: 2 < x < 3. 

Case3: x>3 

100 

If x > 3 then we must solve 

x* - 2x - 3 < 3x - 3 which 

we have already solved in 

case 1. 

    

This time some of the 0 < x < 5 values fall in the x > 3 

interval. 

Solution of case 3:3<x <5 

Solution of the inequality is the union of the two 

intervals (case 2 and case 3): 2 <x<3and 3 < x<5. 

Solution: 2 < x < 5. 

- 1 - x|<|x] 

The inequality sign does not reverse when squaring 

both sides since both sides are non-negative. 

[1=x* < [ 

(1-x)<x? 

-2+ 1< 

“2x+1<0 

-2x<-1 

2x>1 

x>% 

L e e L e e e e 

Graphical Approach 

We have already suggested that a graphical approach coupled 

with the use of technology can be very helpful with the more 

complex of these problems. 

  

Enter the functions: 

a8 Real 
Graph Func :Y= 
Y1BAbs (x-2) [—1 
Y2BAbs (x+4) [—1



  

  

  

    

The solution is x > 1. 

R B A e S 

Exercise B.8.1 

il On separate sets of axes, sketch the graphs of the 

following functions for x € [-5,5]. 

@ Sl b A=l 
¢ Welrd 4 fx)=h-a 

R 

2 On separate sets of axes, sketch the graphs of the 

following functions for x € [-5,5]. 

a f(x)=|xz—9| 

b f(x)=|2x—x2| 

c S(x)=[(x-1)(2+x) 

d  flx)=|dx+1) 

e S (x)=[8-x| 

£ fle)=5-7 

3 On separate sets of axes, sketch the graphs and 

determine the ranges of each of the following functions. 

a fx)=ler1+ - 

b flx)=lxt 2+ 

¢ Slx)=x+A 

d  flx)=x—|4 

VIODULUS FUNCTION"AND SOLVING INEQUALTIES    
e flx)=lx+2-|x-2 

On separate sets of axes, sketch the graphs of the 

following functions. 

a fla)=ald b f(x)fi,mo 

c f(x):‘i+1,x#0 

d f(x):‘%—l,x#O 

Solve the following inequalities for xR . 

a 3x-525x-9 b x-924x-2 

(= 3-8x<2x+1 d E>,~r+l,x;at0 
X 

e X <6-x f X +x<2 

g X -3x>4 h X +2x+5>-4 

i X¥+2x+5<-4 Ftx>1 

k ¥ <3-x 1 ¥ <2 +5 

Solve the following inequalities for xR . 

a |x| <4 b lx-1]<4 

c lx+1|2x d lx-12x 

€ lx+1] 2% f [+ 1|2 [x-1] 

g |2x+1|2|x-1] h lx+ 1|2 |x -3 

i [2x-3|2|ax-3] [1-2x> |x-3| 

Solve the following inequalities for xeR . 

  

  

1 
a Jx-1] = |5 b |X+1|2—‘ 

X 

1 
c [x+1|2—‘ 

x=3 

d lx =12 |x+ 1]+ |x- 3| 

e lx=1] =[x+ 1] - |x-3]| 

f Jx=1] 2 |x+ 1| - 2|x - 3| 

g [7x = 1| = |3x + 1] + |5x - 3| 

h [x*-9]=9-x 
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CHaPTER B8 

  

    

  

  

    

    

  

1. Show that @*+4° >axb(a+6) where 0 < a, b. 

2. Show that @*+4°+¢ >ab+bc+ca where a,b,ceR 

3. Show that @*+&°+¢ +322(a+b+c) where 

a,b,ceR. 

4. Show that (a + b)(b + ¢)(a + ¢) = 8abc where a,6,c e R 

2ab _a+b ' 
B: Show that < where @,6eR" . 

a+b 2 

. b1 
6. Show that fl +—727+l where 0 <a, b. 

a a b 

2 3 3 

7 Show that [flj P +0 where a,beR" . 
2 2 

8. Prove that the sum of a positive number and its 

reciprocal is always greater than or equal to 2. 

9. Show that 24t gfl+[7,11,/;eR’ i 
a+b 

2 
10. Show that t/+‘+fl+224,fl,/7efl?§*. 

a 2 

11.  Find the smaller of 3'* and 6. 

12. Givena 2 b, x < y, prove that M gflxfi 
Y 2 2 

13. For how many #e€Z" is (n+1)" > n"" 

14. 

Answers 
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Reciprocals 

efore beginning this chapter, you should revise the 

meaning of the radian (Chater C4 of the SL text). Note 

the introduction of a new trigonometric ratio, cotf. This is 

one of a set of three other trigonometric ratios known as the 

reciprocal trigonometric ratios, namely cosecant, secant 

and cotangent ratios. These are defined as: 

  

Note then, that cot® = 1 c‘.)—se, sin® # 0 and cosec is 
. . tan® sin® 

often written 'csc’. 

Example C.8.1 

Find the exact values of: 

a  secds® b cosecl50° 

  

1 1 g5 e _ I P 
= see cos45° (l_) /2 

2 

1 1 1 soseclsr = —b = 1 _ 1 _g 
b osee Sin150°  sin30° (1) 

2 
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  c COlT S e = = 
s . T —tan= tan(T) mn[_) tan% 

- + == 
_ fi) 

= IS o d sec0 s 1 

Graphs: Cosecant 

  

-T/2 /2 x 

(1
-g
/u
-)
 

  
Intercepts: none 

Symmetry: 2-fold rotational symmetry about the origin. 

Domain: R /{t#nm,neQ}



Aymptotes: ¥ =%n7,71€ Q 

  

  

  

  

  

  

All the techniques that we have covered in relation to other 

graphs relate to the graphs of reciprocal trigonometric 

  

  

  

Graphs: Secant functions. 

@y 1w 
||| : v 
wi e 

oD i 

32 2 

= 2 = 
A : ! i 
& ! : = 

| ; . 
: : Dilate by half —— +«— 

Up1t 
Intercepts: (0,1) i ; 5 ; . 

i A s I 
Symmetry: reflection about the y-axis. " . U: , U x. U 

2141 P a | 
Domain: R/{i " fl:,neQ} : : : : 

211 —1i;/ ni/z x 
Aymptotes: x ==+ - m,neQ : f\l :/\: 

Graphs: Cotangent b ' ) ' 

Dilateby2 +— — 

s y o Leftm «— 

% 4 \ y 

; -7/ n/ E x\ 

i i it 7 x 

2n+1 
Intercepts: [i A lr,O),neQ 

Symmetry: 2-fold rotational symmetry about the origin. 

Domain: R /{+nr,neQ} 

Aymptotes: x=+nr,neQ 

fid 
For y= Cotan(x— Z] , the intercepts of the basic graph are 

v 1 
fi+;,0],ne@_   

217+ 
translated % to the right: (i 
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Exercise C.8.1 5. Find the exact value of: 

1 Convert the following angles to degrees. a sin(-210°) b cos(-30°) 

a 2?1[ b 3?7‘: c tan(-135°) d cos(-420°) 

= ¢ e cot(~60°) £ sin(-150% 

2. Convert the following angles to radians. g sec(-135°) h cosec(-120°) 

a 180° b 270° 

G 140° d 320° 6. Find the exact value of: 

3. Find the exact value of: a sin (Jg) b COS(*%RJ 

. sinl20° b cos120° . mn(]{t) d sec(—‘%nj 

¢ tan 120° d sec120° e Cot(—-3—nj f sin(j—n] 
4 6 

e sin210° f c0s210° g cot(—’}—‘) h cos(—%") 

g tan210° h cot210° i cosec(—%") j tan (—”Tn ] 

i sin225° j €08225° k sec (—%t) 1 sin (—777[) 

k tan225° 1 cosec 225° 

m sin315° n cos315° i Sketch the graphs of: 

o tan315° p sec315° a y=cosec(2x) 

q sin360° T c0s360° b y:cotan(x—%)fl 

s tan360° t cosec360° c y=sec(x—1) 

4. Find the exact value of: d y= sec[§+%) 

a sinT b cosT e y=cot(2x+7) 

c tanm d secT f y:cosec[%—n’] 

e sin% f 00537;3 g y=cscx—sec(2x) 

g tan%t h cosec%E h }/:cot[Z[x+%j] 

i sin%fl j COS7—(:r i y=csc(2x+7) 

k tan® 1 cot%[ j y=csc 2x+—j+l 

m sin‘%rc n coss3—n k y=sec(3x—m)-1 
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The Pythagorean Identity 

We have seen a number of important relationships between 

trigonometric ratios. Relationships that are true for all values 

of @ are known as identities. To signal an identity (as opposed 

to an equation) the equivalence symbol is used, i.e. =. 

For example, we can write (x+ 1)=x"+2x+1 as this 

statement is true for all values of x. However, we would have 

to write (x+1)° =x”+1, as this relationship is only true for 

some values of x (which need to be determined). 

One trigonometric identity is based on the unit circle. 

Consider the point P(x, y) on the unit circle, 

2+yr=1-() 

From the previous section, we know that 

I x = cos® - (2) 

y = sin@ - (3) 

Substituting(Z)and(.’y)into(l)wehave:(cnsfl)zJr(sine)2 =1 

or 

TR - 
This is known as the fundamental trigonometric identity. 

Note that we have not used the identity symbol, i.e. we have 

not written sin’@+cos’@=1. This is because more often 
than not, it will be obvious from the setting as to whether a 

relationship is an identity or an equation. And so, there is a 

tendency to forgo the formal use of the identity statement and 

restrict ourselves to the equality statement. 

By rearranging the identity we have that sin’0=1—cos’0 and 
cos’@=1-sin’6 . Similarly we obtain the following two new 
identities: 

Divide both sides of (4) by cos’0: 

in2 2, in2 2) sin®0 + cos?0 _ 1 @snn9+cosez 1 

co0s20 c0s20  cos20 cos?®  cosZO 

< tan20+ 1 = sec?0 - (5) 

Divide both sides of (4) by sin’6: 

sin2@ + cos?@ _ _ 1 sin?0  cos?6 _ | 
sin2@ sin20  sin?0  sin?@  sin2@ 

1+ cot?0 = cosec20 - (6) 

RIGONOMETRICTFUNCTI 

  

Problems like this can be solved by making use of a right- 

angled triangle, however, we now solve this question by 

making use of the trigonometric identities we have just 

developed. 

a From sin20 +cos?6 = 1 we have 

2 
sin29+(—§) =] wsin?ir 2 = 1 

5 25 

& sin 5 

i 4 ssin = £2 sin® 3 

3 
Now,asrr.ses—z-, 

this means the angle is in the third quadrant, where the sine 

value is negative. 

Therefore, we have that sin® = 4 3 

  

b Using the identity tan® = Sinf, 
cosB 

= /) 4 we have tan@ 375 3 

  

a From the identity tan20 + 1 = sec?0 we have: 

[%):+ 1 = sec?0 & sec?f = %4' 1 

~sec2® = :% 

~.sech = i% 

Therefore, as cos® = 1 cose = irg. 
sect 13 

However, <6 < 377[ ,meaning that 8 is in the third quadrant. 
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And so, the cosine is negative. That is, cos® = 12 s R.H.S = tan6 — cot® 

sin® cosB 

Now, cosecd = SL but, cosB  sinB 
inf” ) ) 

sin?0 — cos20 
tan® = %w sin® = tan®cosB..sin = lix,}_z - sinBcosH 

| Ll - (1=cos?6) —cos?0 | = 
sinBcos 6 

- 1 _ 13 . 1 —2cos26 
Therefore, cosec /) 5" sinBcosO 

= L.H.S 

Exercise C.8.2 

  

    

  

  

1. Prove the identities. 

a sin® + cotBcosO = cosecO 

sin@ 1+ cos6 52U 4. = 2¢ 0 
b 1 + cos® sin@ cosee 

a cosf + tanOsin® = cose+wsin9 
cosO 

. 5 2 
sin“0 sin-6 _ c =1+ 0 

cosO cos0 1 —cos® o 

_ cos?0 +sin%0 
cos 

_ 1 d 3cos2x—2 = 1-3sin?x 
cosB 

= secH e tan2xcos?x + cotZxsinZx = | 

f sec — secBsin?@ = cosO 
b cos®  1—sin@ 
T B 
e g sin20(1 +cot20)— 1 = 0 

- cos20 _ (1 —sinB)(1 +sin@) 

(1+ sinB)cosO (1 +sin®)cosO 

i cos?0 1 -sin%0 
(1+sin@)cos® (1 +sinB)cosO h L, 1 = 2sec?d 

B 1 —sing [ +sing 
- c0s20 — 1 +sin20 

(1+sin®)cosO 

_ (cos?@ +sin%0) — 1 ) cos0 B 
(1 + sinB)cosO i TS sm6 +tan® = secH 

_ 1-1 
(1 + sin®)cosO 

=0 z 1-sin® _ _cos@ 

= i e i = e ] ) Gl l-iad 

k ; = secx — tanx 
secx + tanx 
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2% 
1 sinx+-225% - 

1 + sinx 

= secd + cosec _ SiiG 4 cos 

tand + cotd 

B sinx+1 _ sinx— cosx + 1 
cosx sinx + cosx — 1 

tanx + secx — 1 
o tanx + secx = ————————— 

tanx — secx + | 

2 Prove the following. 

a (sinx + cosx)? + (sinx — cosx)? = 2 

b sec20cosec?® = sec? + cosec?0 

€ sin*x — cos*x = (sinx + cosx)(sinx — cosx) 

d secx —secZx = tan?x + tanZx 

sindx + cos3x 
e ———————— = | —sinxcosx 

sinx + cosx 

ecx — 1 
£ (cotx — cosecx)? = Seex— 2 

secx + 1 

g (2bsinxcosx)? + b2(cosx —sinZx)? = b2 

Eliminate 6 from each of the following pairs. 

a x = ksin®,y = kcos® 

b x = bsinB,y = acosb 

(o} x = 1+sin0,y = 2—cosO 

d x = 1—bsin®,y = 2+acosh 

e x = sin® +2cos6, y = sin® — 2cosO 

    3 4 If S HEORES & tan® T n<o 3 

find: i cos® i cosecH 

;i 3 3rn = 2 2N b If sin® 4,2_9_21':, 

find: i sec® i cotf 

5. Solve the following, where 0 <6 <2m: 

a 4sin® = 3cosecH 

b 2c0s20 +sin@—1 = 0 

c 2—sin® = 2cos?0 

d 25in2@ = 2+ 3cos@ 

Extra questions 

  

The Inverse Sine Function 

he trigonometric functions are many-to-one which 

means that, unless we are careful about defining domains, 

their inverses are not properly defined. The basic graphs of 

the sine function and its inverse (after reflection about the 

line y = x for the arcsinx function) are: 

¥ 

  

     
arcsinx 

or sin~lx 

The inverse as depicted here is not a function (as it is one 

: many). This is inconvenient as the inverse trigonometric 

functions are useful. The most usual solution to this problem 

is to restrict the domain of the function to an interval over 

which it is one-to-one. 
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   Though this is not the only possible choice, it is one that 

allows for consistency to be maintained in literature and 

among mathematicians. The function thus defined is written 

with a capital letter: f(x) = Sin(x),xe [-225 g] 

The graphs are: 

= Sinx 

   
Notice then that the domain of Sin'x = range of Sinx = [-1, 1] 

and the range of Sin™'x = domain of Sinx = [‘g’ §j| 3 

With these restrictions, we refer to Sin"'x (which is sometimes 

denoted by Arcsinx) as the principal value of arcsinx. 

For example, arcsin(l) =T oo - Iz OF is « 
2 6 6 6 

However, Arcsm( 2) has only one value (the principal value), 

so that Arcsin(l) =T 
2 6 

From our fundamental identity property of inverse functions, 

ie. fof! (x) = f' oflx) = x, we have that: 

Therefore, Sin(Sin™'x)= x = Sin"!(Sinx) only if -1<x<1. 

This then means that sometimes we can provide a meaningful 

interpretation to expressions such as sin(Sin"'x) & Sin"'(sinx) 

- as long as we adhere to the relevant restrictions. 
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1 a1l exi 5 Asie [-1,1]= Sin 3 exists. 

Therefore, Sin 1l £, 
2 6 

3 . b As ,% el[-1,1]= Arcsm(fé) exists. 

IS
 

Now, Arcsm( ) = -Arcsm( ) 

c As 13 ¢ [-1,1] = Sin~!(1.3) does not exist. 

d As sinte [-1,1] = Sin~!(sinm) exists. 

So, Sin~!(sinm) = Sin~1(0) = 

Note that Sin~!(sinm) # ! Why? 

The Inverse Cosine Function 

For similar reasons as those for the sine function, the cosine 

function, cosx, x € ]-oo,co[ being a many-to-one function, 

with its inverse, arccosx, -1 < x < 1 (or cos”'x, -1 < x < 1) 

needs to be restricted to the domain [0,7], to produce a 

function that is one-to-one. 

The function y = Cosx, x € [0,7], -1 < y < 1 (with a capital ‘C’) 

will have the inverse function defined as: 

fix)=Cos'x,-1<x<1,-1<y<m



e 

  

Notice that the domain of Cos™'x = range of Cosx = [-1, 1] 

and the range of Cos™'x = domain of Cosx = [0,7]. 

When these restrictions are adhered to, we refer to 

Cos'x (which is sometimes denoted by Arccosx) as the 

principal value of arccosx. 

From our fundamental identity property of inverse functions, 

ie fof 1(x) = floflx) = x , we have that: 

  

Therefore, Cos(Cos™'x)= x = Cos'(Cosx) only if 0 < x < 1. 

This means that we can provide a meaningful interpretation 

of expressions such as cos(Cos'x) and Cos™(Cosx)- as long 

as we adhere to the relevant restrictions. 

Note also that in this case, Cos ™' () # —Cos 1 (x). 

  
1 a As %e [-1,1]= Cos*‘i exists. 

    UNCTIONS 

b As —é e[-1,1]1= Cos’l(—gl exists. 

Lety = Cos"(~§), then, Cosy = —é, 0<y<m. 

PR 
6 

St 

6 

¢ As 005(37"]6 [-1, ]]:Cosfl(cos(%tjj exists. 

Cos*l(cos(%t)) = Cos™1(0) = g 

Notice that Cos™! (cos(’%’[j) #3F, 
2 

  

a 

Let Arccos(L) = Xx..as Le [0, 1]= Arccos(L) =T 
2 2 2/ 4 

. 1 ¢ LT 1 
Then, sm(Arccos(—)) = sin(x) = sin= = —. 

2 4 
. 1 1 s 1 A = o s Vo (1 5 

Let Sin (4) X as4e [-1,1] = Sin (4) exists. 

b However, this time we cannot obtain an exact value for 

X, so we make use of a right-angled triangle: 

Therefore, from the triangle 

s 41 
we have that cosx = % T i o 

4212 = /15 

o ie. cos(Sin’l(%)) = cosx 

11



3 3 3 ~1 2] = - 2 = =l =2 c Let Cos (4) 6..3545[ 1,1]= Cos (4) 

Then, sin[§~Cos"(%D = sin(’;‘—e) = cosf. 

og-eor () (e () - Therefore, sm(2 Cos (4 cos| Cos 2 

E
N
I
)
 

The Inverse Tangent Function 

The tangent function can be made one : one by restricting its 

domain to the open interval (—72—[, g) . 

= ‘ T I, flx) = Tan(x),x € [7, 2) 

The function: 

y = Tan(x),x e (—g, g), —co < y < oo, (with a capital “T") 

will have the inverse function defined as: 

flx) = Tan™!(x), , —00 < x < oo, 

The graphs of these functions are: 

  

Notice then that the domain of Tan 'x = range of Tanx= (—co, 

o) and the range of Tan"'x = domain of Tanx = sz, g . 

When these restrictions are adhered to, we refer to 

Tan'x (which is sometimes denoted by Arctanx) as the 

principal value of arctanx. 
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From our fundamental identity property of inverse functions, 

ie. fof'!(x) = flofix) = x , we have that 

Therefore, Tan(Tan"'x)= x = Tan"'(Tanx) only if - g <x< % ) 

As we saw with the sine and cosine functions, it may also 

be possible to evaluate expressions such as tan(Tan"'x) and 

Tan"'(tanx). 

For example, tan(Tan"'1) = tan(’—[) = L, 4 

however, Tan"(tanz%rj = Tan }(—/3) = —g. 

Note also that Tan '(—v) Tan(x) 

  

s Aslel-11]= snrl(-%) exists. 

Then, we let 6 = Sin*l(gJ, so that Sinf = % 

Next we construct an appropriate right-angled triangle: 

  

— tan{=0) = —tan§ = - = tan(-0) tan® i 

1 ey 
b As 3 € (~o% ) = Tan 3] exists. 

Let Tan*‘(%) = 0..Tan® = 

W
=



  

Next we construct an appropriate right- ¢ 5| 

angled triangle: - 3 

Then, sin(ZTan*'G)) = §in20 = 2sinBcosO 

1 
X—=X 

J10 

Il ™~ g 

| 

W
i
 

It is these restricted functions that are programmed into most 

calculators, spreadsheets etc. 

If the calculator is set in radian mode, some sample 

calculations are: 

.11l - n . 

Sin” 3 =% 0523599 
n 

g3 _x s Cos 5 & 

Tan -1 = T _: 
7 

    

-1) - 
sin-l — — 

2 6 

{3 = 
tan'({2) x 

3 

  

Exercise C.8.3 

Find the principal values of the following, giving 
answers in radians. 

a Tan 'l b Arcsinl 

c Arccos—1 

d Sinqé e Cos’]-l_ 
4 2 

f Talfl—fi g Tan 2 

h Sin =07 i Arctan0.1 

j Arccos0.3 k Sin™'-0.6 

1 Tan's m Cos™'3 

n Tan 30 o Sin"(%j 

Solve the following equations, giving exact answers. 

a Arctanx = 2 

b Arcsin(2x) = %[ 

¢ Arccos(3x) = sm 
4 

Prove: 

a Arctan(4) —Arctan(%) = 

1
8
 

b smfl(‘g‘% sm*'[-‘g‘) =0 

Solve for x, where: 

Arctan(3x) — Arctan(2x) = Arctan(%j 

Find the exact value of: 

a sin[g—(‘os"@fl 

b cos E +Sin~! (—%H 
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C COS[Tan*I(,fi
H 

et 

(o) 
f cot(Tan='(~

1)) 

Extra example and questions 

Answers 
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Compound Angle Identities 

As we have seen in the previous section, there are 

numerous trigonometric identities. However, they were 

all derived from the fundamental identities. In this section we 

develop some more fundamental identities (which will lead us 

to more identities). These fundamental identities are known 

as compound angle identities. That is, they are identities that 

involve the sine, cosine and tangent of the sum and difference 

of two angles. 

We start with the sine of the sum of two angles, sin(ot+ ) : 

The Diploma Course does not expect students to prove this 

result. It is included for the sake of completeness. 

A commonly given proof of these identities is only valid for 

acute angles: 

  

In the figure, ZAOE = a + B. The construction lines are 

drawn with the right angles indicated. Since /DCO = a 

(alternate angles) and ZDCE = 90° - «, it follows that 

LZAOE=a + B. 

Therefore, we have, sin(a+ ) = sinAOE = g—g 

AD+DE 

OE 

AD |, DE 
OE OE 

BC , DE 
OE OE 

BC OC , DE  EC 
0C" OE EC OFE 

= sino x cosP + coso x sinf3 

  

It is now possible to prove the difference formula, replacing 

B by —B we have: 

sin(a—B) = sin(o+(-p)) 

= sinacos(—P) + cosasin(—P) 

= sinacosP — cosasinP 

(cos(-P) cosP and sin(-3) sinfd) 

And so we have the addition and difference identities for sine: 

  

A similar identity can be derived for the cosine function 

(using the same diagram): 
L a_OA - OB-AB 
cost@+B) = 55 OE 

0B AB 
OE OE 

_oB D 
OE OE 

OB, OC CD EC 
OC OE EC OE 

= cosoicos P — sinasin 
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Similarly, from this and replacing B by —B we have that 

cos(o.—B) = cosoicosP + sinosinf - 

And so we have the addition and difference identities for 

cosine: 

Also, the tangent addition identity can be proved as follows: 

  

. sin@ _ 
Using “osb tan® 

tan(a+ B) = sin(o+B) 
cos(o+ B) 

_ sinoicosP + cosasinB 

coso.cosP — sinosin 3 

sinoicosP + cosasin3 

_ coso.cos B 
cos0.cosP — sinosin B 

coso.cosP 

_ tano+ tanf 
| — tanoctanB 

Again, if we replace B by -B we have: 

tano, — tan 

tan(a.-B) = I+ tanotanB 

And so we have the addition and difference identities for 

tangent: 

  

As a special case of the compound identities we have obtained 

so far, we have a set of identities known as the double-angle 

identities. 

Using the substitution # = a =  we obtain the identities: 

sin260=2sinfcosd 

c0s20=cos’0 —sin’@ 

i.e. substituting # = a = f into: 

sin(o.+ B) = sino.cosP + cosasin we obtain 

sin(0+0) = sinBcosH + cosBsin® 

~.sin260 = 2sin®cosO 

Similarly, substituting 6 = a =  into: 

cos(o+P) = cosccosP — sinasinB we obtain 
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cos(0+0) = cosBcosO—sinBsin® 

~.c0s20 = cos?0 —sin20 

The second of these can be further developed to give: 

c0s20 = cos?6 —sin20 Il c0s20 — (1 — cos20) = 2cos20 - 1 

and 

Il c0s20 = cos?0 —sinZ0 (1 —sin20) —sin20 = 1 —2sin20 

Finally, we have a double-angle identity for the tangent: 

  

Summary of double-angle identities 

  

We have seen how trigonometric identities can be used to 

solve equations, simplify expressions and to prove further 

identities. We now illustrate this using the new set of identities. 

sin3ocoso — cos3asing 

sinoLcos o 

sin3o.  cos3o _ 
sino.  coso 
  

_ sinBo.—a) 

sino.cos o 

sin2o 

=sin2a 
1 

2 

=2 

 



o HER IDENTITIES     

  

cos30. = cos(2o+ ) 
b 

3n 2n T T 

= c0s20.cos0.— sin20.sino. a3 _ tan(3n+2") i e Bl - tang + tan = 

12 12 12 3t_2n ., . W =m 1 — tan=—tan== 1 —tan=tan= 
= (2cosZo.— 1)coso — 2sinocosoLsino 127 12 e 

= 2cos?0o— cosa— 2sin2acos o e = 2cos & s 0s ) 7 _ i 

1 -1 
= 2cos30— coso— 2( 1 — cosZo) cos o 1-1x% E 3 

2co0s300— cosoL — 2cos 0+ 2cos3 o I 

4cos30.— 3cosa I 

  

LHS = _sin20+sing _ _2singcosd + sing 

cos2¢ +cosd+ 1 2cos2h— 1+ cost+ 1 

  

_ sin¢(2cos¢ + 1) 

    
  

LHS = cos(3——n— 6) cosh(2cosd + 1) 

2 _ sing 

= cos(%‘)cose + sin(%‘t)sine cosd 
= tan¢ 

= 0xcosB+(—1)xsin® =R.H.S 

= —sin® e i N, U DR e R R TV 1) f.o 

=RH.S Exercise C.9.1 

T e S RN R = =AU A e 1 Expand the following. 

a sin(o+ @) b cos(3o+2B) 

c sin(2x—y) d cos(h—2a) 

e tan (20 — o) £ tan(¢ —3m) 

2. Simplify the following. 

a sin20cos3P — sin3fcos2a 

a b cos2a.cos 5P — sin2asin5f 

cos15° = cos(45°—30°) = cos45°cos30°+ sin45°sin30° s sinxcos2y+ sin2ycosx 

= 1 ® fi & A X 1 d cosxcos3y + sinxsin3y 
J20 20 4.2 

JBi & tan2o — tan B 
= - 2.2 1+ tan2otan B 
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f tan(x —y) + tany 

I — tan(x —y)tany 

| — tan¢ 
g 17 ang 

h %sin(a+fl)+%cos(o¢+fi) 

Given that sin® = i 0<6< TEE and 

cosp = AI%' n<H< 377|: , evaluate: 

a sin(6 +¢) 

b cos(8 +0) 

c tan(0 — @) B 

Given that sin® = —%, n<O< 37n 

and cos¢ = »f%. n<H< 3?7[ , evaluate: 

a sin(0—¢) 

b cos(6—¢) 

c tan(0+ ) 

Given that sin® = —2, Mo , evaluate: 

a sin26 

b cos26 

c tan20 

d sin40 

Given that tanx = -3, g <x <7, evaluate: 

a sin2x 

b cos2x 

c tan2x 

d tan4x 

Find the exact value of: 

a sin2Z b sin 105° 
12 

11 
c cos—~ d tan 165° 

12 

i 3n 
Given that tanx = % TSX$T5, evaluate 

a sin2x b cosec2x 

Extra examples and questions 

Answers 

  

c cosdx d tan2x 

Prove the following identities. 

a cotx — cot2x = cosec2x 

b sin(x +y)sin(x—y) = sinZx — sin2y 

c sec2x = 1+ tanZx 

2sin26 
2 +¢)+ 0—¢) = ———F> d tan(O + ¢) + tan( ) 0328 * c0s2h 

e costo —sinto = 1-2sinZa 

1 cos, 
f — . SO tany 

sinycosy  siny 

1+ cos2y _ _sin2y 

8 sin2y 1 —cos2y 

h csc(9+§) = secH 

i cos3x = cosx —4sinZxcosx 

1 +5sin26 _ cos® + sinB 
) c0s26 cosB —sin® 

+ 
k (cm.\'Jrc:scx)z = 1+ cosx 

1 - cosx 

1 sin3o = 3sino—4sinda 

_ 1 —tan?x 
m cos2x = ———— 

1 + tan=x 

n 2cotBsin?@ = sin20 

o tan(g) = csch— cotd 
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The right hand side of the identity is the sine graph with the 

transformations: 

his chapter will look at the symmetric properties of the 

trigonometric functions and the implications that they 

Symmetry 

T 2 to the left. 1 
2 

 
 

Reflection in the x-axis. 2. 

have for the relationships between them and their use in 

modelling. 

Translate Example C.10.1 

Examine these identities graphically: 

19|   37:] 
rt— 

2 
sin( cosx 

B 
X 

  o
 I 

o — = % o o | ” 
5 @ 
— i 
o ~ % % o 9 i+ > 
2 @ 
~ b 

to the left to 
3 

2 
The original sine graph (green) is translated 

give the brown curve. 
The cosine graph is: a 

to give the blue ) This is then reflected in the x-axis (inverted 

This is identical to the cosine curve (in the left hand column). 

curve. 

ether this constitutes a proof. ight like to discuss wh You mi   
2n 
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b We will present this answer as it might appear if you 

use a graphic calculator. 

(sinx + cosx)2 -+ (sinx — cosx)? = 2 

  

3Ty 

£2(x)=(sin(x)~cos(x)) 

05 

.  {00-banbecos)?         
Addition of ordinates y-coordinates - (either by 

inspection or using the calculator) leads to the required 

result. 

Exercise C.10.1 

1. Use graphical methods to demonstrate the following 

identities. 

a cotx — cot2x = cosec2x 

b secZx = 1+ tanx 

c csc(e + g) = secH 

¥ cos 
d (cotx + csex)? = 1+ cosx 

| —cosx 

ry — 1 —tan2x 
e CO82x = ——— 

1 +tan=x 

f 2cotBsin?@ = sin26 

g lan(z) = csch — cotd 
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Modelling using Trigonometric 

Functions 

Many natural phenomena are periodic. The trigonometric 

functions are ideal for modelling such functions. They are, 

therefore good sources of topics for extended investigations. 

We will sketch out two suggestions. 

Music 

We hear musical notes because musical instruments 

(including animal voice-boxes) vibrate and transmit the 

vibrations to the air. These then travel to our ear where they 

make the eardrum vibrate in the same way. The inner ear then 

decodes the vibration and sends messages to the brain that 

then 'hears' the sound. 

The process is, however, complex as a musical note is almost 

never a pure sine wave (which sounds very dull!). 

The subtleties of musical notes are mainly due to what are 

known as 'harmonics'. A guitar string that is plucked vibrates 

mainly like this: 

o<> 

This is known as the 'fundamental note. For audible notes, 

these have frequencies from 20 to 20 000 Hertz (cycles per 

second). 

If a fundamental note has a frequency of 500 Hz then it has a 

period of /500 sec. 

. . 2 2r . 
This means, using 7=-——=x=——, that a possible 

modelling function is: # € 

2 
  P:flxsin[ - 

500 
/J:axsin(l(bOOfl't) 

The parameter a (amplitude) defines the loudness of the 

sound. P is the pressure at time t that the vibrating string 

transmits to the air. 

Letting a = 2.



    

  

ANNAN 
NV VS 

AAAN 
TV VY 
£1(x)=2- sin(1000- 7 x; 

-6.67       
The horizontal scale runs from -0.01 to 0.01 sec. There are 

10 complete periods in 0.02 sec so there are 10 + 0.02 = 500 

cycles per second (as required). 

But this is not all. The string usually vibrates at other 

frequencies at the same time. This happens naturally but 

also because the string is not plucked in the middle. The first 

'harmonic' is this vibration: 

T e g 

This is at twice the frequency and is usually not as loud as the 

fundamental. It is important to note that they sound together. 

  
2z 

1 
/1000 

with twice the frequency and half the amplitude, we get: 

Ifweadd the function: 2=1x sin[ /J: 1xsin(200077) 

6.67%y 

R A e 1 
AR Y 

£1(x)=2- sin(1000- - x) 
The two notes sound togethe1 and it is the sum of the two 

functions that are transmitted through the air to the ear. 

6.67Ty 

  

fl(,1 - sin! 1000 T \')+sm 2000- n x 

AL ADA R 
TYVVETUUVY 

When this single vibration is transmitted to the inner ear 

(cochlea) the two hairs that are tuned to these two frequencies 

are stimulated and send signals to the brain. 

        

When we perform this breakdown of a complex periodic 

function into its component sine functions, we call it 'Fourier 

Analysis' and it is difficult! 

The brain then performs an analysis of the signals. 

Next time you listen to some music, think about the 

complexities of what is going on in your brain. A single 

vibration hits your ear and yet you are able to hear the person 

singing and numerous separate instruments - a prodigious 

feat of computation. 

If you would like to undertake an investigation of the 

mathematics of real musical sounds, you will need to capture 

graphs of their waveforms. 

There are some 'apps' that will do this for you. Search the app 

store using the search word 'oscilloscope'. 

An oscilloscope is a device that displays variable signals as 

graphs. 

Tides 

The data in the remainder of this chapter are tide tables for 

San Diego Harbour (California, USA). 

  

They were derived from the website: 

https://tides4fishing.com/us/california/san-diego 
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Date Tide 1 Height Tide 2 Height Tide 3 Height Tide 4 Height 

1 1:15 4.0 6:56 1.9 13:38 52 20:42 1.6 

2 2:47 3.5 7:45 2.4 14:44 5.2 22:18 1.3 

3 4:51 3.4 9;15 2.8 16:04 5.4 23:42 0.8 

4 6:27 37 10:56 2.8 17:20 5.8 

5 0:44 0.1 7422, 4.2 12812 2.5 18:24 6.3 

6 1:33 -0.4 8:03 4.6 13:11 2.0 19:20 6.7 

7 2:17 -0.8 8:04 5.1 14:02 1.5 20:10 7.0 

8 2:57 -1.0 9:16 5.5 14:50 1.0 20:58 71 

9 3:36 -0.9 9:51 5.8 15:36 0.7 21:43 7.0 

10 4:13 -0.6 10:27 6.0 16:22 0.5 22:29 6.5 

11 4:49 -0.2 11:03 6.0 17:09 0.5 23:15 5.9 

12 325 0.5 11:41 5.9 17:59 0.6 

13 0:04 52 6:01 1.2 12:20 5.7 18:54 0.9 

14 1:00 4.4 6:39 1.9 13:04 54 20:00 1.2 

15 2:14 3.8 7:23 2.5 13:57 5 21:23 1.3 

16 4:10 35 8:32 3.0 15:09 4.9 22:58 1.2 

17 6:24 37 10:20 3.2 16:34 4.8 

18 0:11 1.0 7:18 4.0 11:52 3.1 17:46 5.0 

19 1:00 0.7 747 4.3 12:47 2.7 18:39 5.3 

20 1:36 0.5 8:09 4.6 13:25 2.3 19:21 8.5 

21 2:06 0.3 8:29 4.8 13;57 1.9 19:57 5.8 

22 2:34 0.2 8:50 5.0 14:28 1.6 20:30 5.9 

23 3:00 0.2 9:12 53 14:59 1.2 21:03 519 

24 3:25 0.2 9:36 S5 15:31 1.0 21:36 5.8 

25 3:51 0.4 10:01 5.7 16:05 0.8 22:10 5.6 

26 4:17 0.7 10:28 5.8 16:41 0.7 22:47 5.3 

27 4:44 1.0 10:56 5.9 17:21 0.6 23:28 4.8 

28 5:11 1.5 11:27 5.8 6:08 0.7 

29 0:18 4.3 5:41 1.9 12:04 2.7 19:07 0.8 

30 1:26 3.8 6:16 2.5 12:53 5.6 20:24 0.9           
  

The data can be obtained here: ‘.:% e 

ATk 

  

    
   The data covers one month. 

The times are given using the 24-hour clock'. 

The heights are measured from an arbitrary zero of depth. This is why there are some negative numbers. The unit is feet (USA). 

The high and low tides are given in the order in which they occur. This is why there are some empty cells. 

The high tides are in the blue cells. 
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Modelling 

The purpose of 'modelling' is to produce a ‘mathematical 

entity that can be used to predict behaviour. In this cae, we are 

looking for a function of time that can be used to predict the 

tidal height at any time during the month. This can then be 

used to predict the depth of water anywhere in the harbour. 
This will enable predictions of time periods when shipping 

can move safely. This means clear of the sea bed and bridges 

etc. 

There are two periodic aspects to the tides that need to be 

included in the model. 

1, The twice daily cycle of high and low tides. 

2. The variability of the heights of the high and low tides. 

As a general comment about the first of these, the times of the 

first high tide each day are: 

01:32:00 

02:04:00 

01:36:00 

00:55:00 

00:41:00 

00:01:00 

01:12:00 

00:35:00 

00:36:00 

00:36:00 

00:38:00 

00:23:00 

00:56:00 

01:14:00 

01:56:00 

02:14:00 

00:54:00 

00:29:00 

00:22:00 

00:20:00 
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00:24:00 

00:25:00 
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26 10:28 5.8 00:27:00 

27 10:56 5.9 00:28:00 

28 10:27 5.8 00:31:00 

29 0:18 4.3 00:23:00 

30 1:26 3.8 01:08:00             
This sequence of high tides shows that high tide times appear 

to happen about an hour later each day. The period is neither 

24 hours between this sequence of high tides nor 12 hours 

between successive high tides. 

The first task is to try to model these timings. One of the 

problems is that the independent variable is time which is a 

non-decimal measuring system. One solution is to decimalise 

the times by using a formula such as: 

t =24 x day + hour + minutes + 60 

At the first stage, we will just try to model the occasions on 

which the high and low tides occur. These first three days 

times are: 

  

  

  

  

  

  

  

  

  

  

1 1:15 25.25 1 

1 6:56 30.93 -1 

1 13:38 37.63 1 

1 20:42 44.70 -1 

2 2:47 50.78 1 

2 7:45 55.75 -1 

2 14:44 62.73 1 

2 | 2218 70.30 -1 

3 4:51 76.85 1 

3 9:15 81.25 -1 

3 16:04 88.07 1           
As we are not yet trying to model the size of the tides, high 

tides are recorded as +1 and low tides as —1. 

The table shows five cycles in a 88.07 - 25.25 = 62.82 hours. 

The period is, therefore, 12.56. 

2 2, 
Using T=—=n= Z% \yith the calculated period gives: 

n T 

= _0600 
1047 
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CHAPTER 

  

This suggests a modelling function of: /(#)=sin(0.5¢+4). 

The parameter b must be chosen to synchronise the modelling 

function with the data. There are multiple values that work. 

The following diagram shows the data points in blue (the lines 

joining them are unnecessary) and the modelling function 

A(2)=sin(05+137). 

AANAAN 
VYVYNVY 
We seem to have made a good start. 

But what about the fact that the actual size of the tides also 

appears periodic? 

This graph (produced using Excel) shows one of the high 

tides. It suggests some level of periodic behaviour. 

  

  70 

60 00— 
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    0.0   
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A full analysis would need to include both high tides and 

both low tides. 

The period (if there is one!) appears to be close to a month. If 

this is true, why might this be? 

After modelling the two parts of this problem, can you put 

the two parts together to produce a function that will predict 

the height of the water at time £? 
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odern structures such as our main picture are often 

made from supporting structures of steel wires and 

beams. These are frequently visible. 

It is both the tension forces in these components and their 

direction that gives the building its strength. This dual feature 

(force and direction) defines a vector. 

Scalar and vector quantities 

Numerical measurement scales are in widespread use. It is 

important to be able to distinguish between two distinct types 

of measurement scales, scalars and vectors. 

Scalar quantities 

A scalar is a quantity that has magnitude (size) but no 

direction. For example, we measure the mass of objects using 

a variety of scales such as ‘kilograms” and ‘pounds. These 

measures have magnitude in that more massive objects (such 

as the sun) have a larger numerical mass than small objects 

(such as this book). Giving the mass of this book does not, 

however, imply that this mass has a direction. This does not 

mean that scalar quantities must be positive. Signed scalar 

quantities, such as temperature as measured by the Celsius 

or Fahrenheit scales (which are commonly used) also exist. 

Vector quantities 

Some measurements have both magnitude and direction. 

When we pull on a door handle, we exert what is known 

as a force. The force that we exert has both magnitude (we 

either pull hard or we pull gently) and direction (we open 

or close the door). Both the size of the pull and its direction 

are important in determining its effect. Such quantities are 

7 
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said to be vectors. Other examples of vectors are velocity, 

acceleration and displacement. The mathematics that will be 

developed in this section can be applied to problems involving 

any type of vector quantity. 

Exercise C.11.1 

The following situations need to be described using an 

appropriate measure. Classify the measure as a scalar or a 

vector. 

1. A classroom chair is moved from the front of the room 

to the back. 

2. The balance in a bank account. 

3. The electric current passing through an electric light 

tube. 

4. A dog, out for a walk, is being restrained by a lead. 

5. An aircraft starts its take-off run. 

6. The wind conditions before a yacht race. 

7. The amount of liquid in a jug. 

8. The length of a car. 
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Representing Vectors 

Directed line segment 

There are a number of commonly used notations for vectors: 

Notation 1: 

This vector runs from A to B and is depicted A 

as AB or AB with the arrow giving the 

direction of the vector. Point A is known 

as the tail of the vector AB and point B is B 

known as the head of vector AB. 

We also say the AB is the position vector of B relative to 

(from) A. 

In the case where a vector starts at the origin C 

(O), the vector running from O to another 

pointCis simply called the position vector 

of C, 0C or OC. 0 

Notation 2: 

Rather than using two reference points, A and 

B, as in notation 1, we can also refer to a vector 

by making reference to a single letter attached 

to an arrow. In essence we are ‘naming’ the 

vector. 

The vector a can be expressed in several ways. In text books 

they are often displayed in bold type, however, in written 

work, the following notations are generally used: 

  

We will consider another vector notation later in this chapter. 

Magnitude of a vector 

  

Similarly, if we are using vector notation 2, we may denote the 

magnitude of a by la| = a. 

Note then that |a| 2 0. 
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Equal vectors 

  

These aircraft must have equal velocity vectors if they are to 

maintain their formation. 

  

Notice that if @ = b, then vector b is a translation of vector 

a. Using this notation, where there is no reference to a fixed 

point in space, we often use the term free vectors. That is, free 

vectors are vectors that have no specific position associated 
with them. In the diagram below, although the four vectors 

occupy a different space, they are all equal. 

b a d 

C 

Note that we can also have that the C 
vectors AB = CD, so that although 

they do not have the same starting 

point (or ending point) they are D 

still equal because their magnitudes B 

are equal and they have the same 

direction.



  

Negative vectors 

The negative of a vector a, denoted by ‘~a’ is the vector a but 

pointing in the opposite direction to a. 

”/' 

Similarly, the negative of AB is ~AB / 

or BA, because rather than starting at 

A and ending at B the negative of AB 
B=e——— A 

starts at B and ends at A. 
B——»A 

Note that |¢| = |-«| and AB| = [-AB| = [BA|. 

Zero vector 

The zero vector has zero magnitude, |0| = 0 and has no 

definite direction. It is represented geometrically by joining 

a point onto itself. Note then that for any non-zero vector a, 

la|>0. 

Orientation and vectors 

Vectors are useful when representing positions relative to 

some starting point. Consider: 

the position of a man who has walked 2.8 km across a field in 

a direction East 30° South or 

a car moving at 20 km/h in a direction W 40° N for 2 hours. 

Each of these descriptions W 

can be represented by a 

vector.     

    

  

| 

We start by setting up \ 

a set of axes and then + 

we represent the above 

vectors  showing  the 

appropriate direction and 

magnitude. Representing 

the magnitude can be done 
using a scale drawing or 

labelling the length of the 

vector. ey 
Scale: 1 ecm : 10 km 

Scale: 1 cm @ | km 

40° 

    

We start by representing her journey using a vector diagram. 

The first part of her journey is represented by vector OA and 

the second partby AB. Note 

then that because her final 

position is at point B, her final 

position, relative to O, is given 

by the vector OB. 

B    
   Scale: lem : 1 km 

4.0 km 

All that remains is to find W 

the direction of OB and its 

magnitude. To do this we 

make use of trigonometry. 

Finding |OB|:Using the cosine 
rule we have: 

OB? = OA? + AB? - 2(AB)(OA) cos(60°) 

=28 +4.0°-2x28x40x05 

=12.64 

OB =3.56 

Next, we find the angle BOA: 

AB2 = OA2+OB2-2(0A)(OB)cos(£ZBOA) 

4.02 = 2.82+12.64 —2(2.8)(+/12.64)cos(£LBOA) 

2.82+12.64 - 4.02 

AT 2(2.8)(J/12.64) 

ZBOA = cos 1(0.2250) 

= 76°59'45” 

~77° 

That is, the bushwalker is 3.56 km E 47° N from her starting 

point. 

Although we will investigate the algebra of vectors in the 

next section, in Example C.11.1 we have already looked at 

adding two vectors informally. That is, the final vector OB 

was found by joining the vectors OA and AB . Writing this in 

vector form we have, OB = OA + AB. 

127 

R ——



To add two vectors, @ and b, geometrically we 

1 first draw g, 

2. draw vector b so that its tail meets the arrow end of 

vector a, 

3 draw a line segment from the tail of vector a to the 

arrow end of vector b. 

This vector then represents the result a + b. 

ST = e 

=
 

  

a CA=-AC=-a. 

b To get from B to C we first get from B to A and then 

from A to C. That is, we ‘join’ the vectors BA and AC. 

In vector notation we have: BC = BA +AC 

However, AB = b= BA = -AB = -b 

~BC=—-b+a 

c AB+BC = AC = a..|AB+BC| = |d 

Exercise C.11.2 

—_
 Using a scale of 1 ¢cm representing 10 units sketch the 

vectors that represent: 

a 30 km in a westerly direction. 

b 20 newtons applied in a NS direction. 

c 15 m/s N 60° E. 

d 45 km/h W 30° S. 
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The vector —«————— represents a velocity of 

20 ms™' due west. Represent the following vectors: 

a 20 ms™' due east 

b 40 ms' due west 

c 60 ms™' due east 

d 40 ms™' due NE 

State which of the vectors shown: 

—_— 

4 e 
— |d 

b 
I 
- 

/ 

g 

a have the same magnitude. 

b are in the same direction. 

c are in opposite directions. 

d are equal. 

e are parallel. 

For each of the following pairs of vectors, find a + b. 

b 
a 

V 
—_—— 

c d 

e 

a 

b 

a 

b 

f 

h 

For the shape shown, find a single vector which is 

equal to: 
B C 

a AB+BC 

b AD+DB b



¢ AC+CD 

d BC+CD+DA e CD+DA+AB+BC 

B C 

a 

Consider the fl 
A parallelogram shown b 

alongside. Which of the 

following statements are true? 

a  AB=DC b la| = o] 

c BC =5 d |[AC+CD| = |b] 

e AD = CB 

For each of the following: 

i complete the diagram by drawing the vector 

AB+BC. 

ii find [AB + BC|. 

a 

A 

& 15 km c 

10 km 

\ 
45°     

Two forces, one of 40 newtons acting in a northerly 

direction and one of 60 newtons acting in an easterly 

direction, are applied at a point A. Draw a vector 

diagram representing the forces. What is the resulting 

force at A? 

Two trucks, on opposite sides of a river, are used to 

pull a barge along a straight river. They are connected 

to the barge at one point by ropes of equal length. 

The angle between the two ropes is 50°. Each truck is 

pulling with a force of 1500 newtons. 

a Draw a vector diagram representing this 

situation, 

b Find the magnitude and direction of the force 

acting on the barge. 

10.  Anaircraftis flying at 240 km/h in a northerly direction 

when it encounters a 40 km/h wind from: 

i the north. ii the north-east. 

a Draw a vector diagram representing these 

situations. 

b In each case, find the actual speed and direction 

of the aircraft. 

11.  Patrick walks for 200 m to point P due east of his cabin 

at point O, then 300 m due north where he reaches a 

vertical cliff, point Q. Patrick then climbs the 80 m cliff 

to point R. 

a Draw a vector diagram showing the vectors OP, 

PQ and QR. 

b Find: i |joqQ| i |OR| 

Cartesian Representation of 

Vectors 

Representation in two dimensions 

‘When describing vectorsin 

two-dimensional space it 

is often helpful to make use 

of a rectangular Cartesian 

coordinate system. 

  

As such, the position 

vector of the point P, OP, has the coordinates (x, y). 

X 
The vector a can be expressed as a column vector (‘j . 

That is: 
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Unit vector and base vector notation 

We define the unit vector / ~ [ ([) ‘ 

as the position vector of the point having coordinates (1, 0), 

and the unit vector / — \‘ Il) ] 

as the position vector of the point having coordinates (0, 1). 

The term unit vector refers to the fact that the vector has a 

magnitude of one. 

&= m - [5) * [?j :x((])] +y(?) =xi+yj 

i.e. the position vector of any point 

can be expressed as the sum of two 

vectors, one parallel to the x-axis 

and one parallel to the y-axis. 

  

The unit vectors i and j are also known as the base vectors. If 

we confine ourselves to vectors that exist in the plane of this 

page, the most commonly used basis is: 

i ) where |i| = |j| = 1 
1 

Notice the definite direction of the base vectors, i.e. i points 

in the positive x-axis direction while j points in the positive 

y-axis direction. 

Vectors can now be expressed in terms of these base vectors. 
  

  

  

a{3i+j:() 

b=|it3 —f\(* 

  

  T 

1l
 

                          
  

The vector a is ‘three steps to the right and two steps up’ and 

can be written in terms of the standard basis as a = 3i+2j. 
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The vector b is ‘one step to the left and three steps up. ‘One 

step to the left’ is in the opposite direction of the basis 

element i and is written —i, giving the definition of the 

vector b = —i+3j. The vectors —i and 3j are known as 

components of the vector b. 

The other definitions follow in a similar way. 

Representation in three dimensions 

When vectors are represented in three- 

dimensional space, a third vector must be 

added to the basis, in this case it is a unit 

vector k and is such that the three unit 

vectors are mutually perpendicular as 

shown. 

In addition, extra basis vectors can be added to generate higher 

dimensional vector spaces. These may not seem relevant to 

us, inhabiting as we do, a three dimensional space. However, 

it remains the case that it is possible to do calculations in 

higher dimensional spaces and these have produced many 

valuable results for applied mathematicians. 

As was the case for vectors in two dimensions, we can 

represent vectors in three dimensions using column vectors 

as follows: 

The position vector @ = OP where P has coordinates 

(x, y, 2) is given by 

x x 0 0 1 0 0 

a = y]: 0]+ y]+[0]=x0]+_v[l]+zo 

z 0 0 2 0 0 1 

= xi+yj+zk 

Where this time the base vectors are: 

 



TRy 
i 

Vectors in three dimensions can be difficult to visualise. Xy Xy X tx, 

s s i s b= |y £V = [En 
This diagram is a representation of the sum of vectors in three ! B e 

i z z z dimensions: 1 \f2 i 

= (xEx)i+ (v £yt (2, £k 

Scalar multiplication 

If a= GJ = xi+yj 

then ka - km - (’“) = kvitkyj | keR. 
ky 

X 

If a= [yl = xi+yj+zk then: 

z 

  

X kx 

The diagram shows: ka = /{y] = [ky] = kxi+kyj+kzk , ke R 

kz 

(2,1,1) + (-1,1,1) = (1,2,2) 

The following QR code links to a 3 dimensional image of this 

calculation that you will be able to 'tumble’ in order to get a 

better idea of the geometry of the situation. 

3-d image. This file and the others like it 
in this chapter will need to be downloaded 

: : ; . 13 
and viewed with an image viewer. Web O] 

browsers will not normally suffice.       
  

  

  

  

  

  

Vector Operations Vectors are added ‘nose to tail’: 

Addition and subtraction . 
a 

v . ) _ Ay ' ¥ da = Ri+j 

If a= (Ti) = xji+y,j and b= (yzj = xyity,j then: \ 

/' \b F i3 \ 

\b = —ilr3j 
Ay Y2y o ity . y a=2i-j ath (_h)t()’z) (yl iyzj (x, £3,)i + (v, £3,)) 

%1 X il                           

If a= Y| = xityjtzik and » = ¥y =«\?Zi+}'2j+zzk 

2y Z 

then 
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L CHAPTER G —— 
a Vectors are added in much the same way as are 

algebraic terms. Only like terms can be added or -2 3 _3-3 -6 

subtracted, so thata + b = (2i—j) + (—i+3j) 

2-Di+(=1+3)j 
‘ = i+2j 

Il ¢ 34-P =15 0 |=| -1 |T] 0o+1 |=]| 1 

Il 

o
 This problem is solved in a similar way: 

b—a = (—i+t3j)—(2i-)) 

(=1-2)i+(3-(-1)) 

— 3it+4j 
Note that we could also have expressed the sum as: 

boa=b+(-a)= (~i+3)+(-2+j) 

= —3i+4j 

(i.e. the negative of a vector is the same length as the original 

vector but points in the opposite direction.) 

c Combining the properties of scalar multiplication 

with those of addition and subtraction we have: 

  

3b—2a = 3(—i+3j)—2(2i—j) 

—3i+9j—4i+2j 
~7i+ 11 

Il 
Il 

The position vectors are: 

— 
Lighthouse OL = -4i+3j and 

— 
Town OT = 2i-5j. 

  

5l
 

I ol St Then, to get from L to T we have L 

—  —> 
=—0OL+OT 

= —(—4i+3j)+(2i-5)) 

= 4i-3j+2i-5j 

= 6i-8 

This means that the town is 6 km east of the lighthouse and 

8 km south. 

  

3 -2 3-2 1 

a Pra=| 1|t 0 |=| -1+0 || 1 
4 3 4+3 7 Exercise C.11.3 

1. If a=i+7j-k and b = 4i+7j+5k ,find: 

a 4a b 3b 

3 1 -2 341 4 

b P*‘;': -1 |73 0 |T| -1-0|=]| - c 2a-b d 2(a-b) 

4 3 413 2.5



    

— 
Thepg)itionvectorsofAandBareOA = -3i+4j-2k 9. 

and OB = i—4j-3k. Find: 

— — = 
a AO b OA-50B 

— — — — 
c -50A+30B d 30A +6BO 

=] 6 

Iffp=| 2 |andg =| | |.Find: 

4 2 

a pt2q b —3p-5q 

€ 3p d 2p+3q 

Find the position vectors that join the origin to the 

points with coordinates A (2,-1) and B (-3, 2). Express 

your answers as column vectors. Hence find AB. 

A point on the Cartesian plane starts at the origin. 

The point then moves 4 units to the right, 5 units up, 6 

units to the left and, finally 2 units down. Express these 

translations as a sum of four column vectors. Hence 

find the coordinates of the final position of the point. 

10. 

Two vectors are defined as a = i+j+4k and 

b= —7i—j+2k.Find: 

a —6a-2b b —S5a+2b 

c 4a+3b d —2(a+3b) 

4 4 
Ifx=| 4 |andy = | 3 |,find as column vectors. 

2 7 

a 2x+3y b x+2y 

c S5x—6y d 

Find the values of A and B if: 

A(7i+7j+4k)—3(3i—j+Bk) = —37i-25j+ 5k 

Two vectors are defined as: 

-3 6 
a= 1 |and b =| _¢ 

4 -5 

Find values of the scalars X and Y if Xa + Yb is equal 

to: 

-36 

a 32 

33 

30 

=31 

—12     
A submarine (which is considered the origin of the 

vector system) is 60 metres below the surface of the 

sea when it detects two surface ships. A destroyer (D) 

is 600 metres to the east and 800 metres to the south of 

the submarine. An aircraft carrier (A) is 1200 metres 

to the west and 300 metres to the south. 

a Define a suitable vector basis for this problem. 

b Using the submarine as the origin, state the 

position vectors of the destroyer and the aircraft 

carrier. 

c A helicopter pilot, based on the aircraft carrier, 

wants to make a supplies delivery to the 

destroyer. Find, in vector terms, the course 

along which the pilot should fly. 
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Geometric proofs 

Vector techniques can be used to prove some geometric 

proofs. 

  

The first step in constructing a vector proof is to set up and 

name some vectors that can be used to express the various 

parts of the diagram in vector terms. 

If we make the following definitions: OA=a and OB=h: 

A C 

e e 

We can now use vector ‘nose to tail' addition to express other 

parts of the diagram in terms of this 'basis'. 

o B 

For example: AB=AO+OB 

=-0A+O0B 

=-a+b 

In constructing a proof, it is important not to assume the 

truth of what you are trying to prove! 

In this case, we do know that P is on AB, not that it is half 

way along it. 

However, it must be the case that AP=4 xAB where k, is 

some scalar factor. 

It follows that: AP= 4 x AB 

=k x(-a+b) 
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Similarly: OC=0OB+BC=b+a=a+b and P lieson OC. 

Therefore there must be a second scalar k, such that: 

OP=#4,x0C 

=k %(a+b) 

Once again, we must avoid any assumptions about the two 

scalars being the same. 

Looking at the triangle OAP:a= £, x(a+b)—4 x(—a+b) 

We now use the fact thataand bare vectors and that two vectors 
can only be equal if they have both the same magnitude and 

direction. This means that we must have the same multiple of 

both a and b on each side of the vector equation. 

This leads to the technique known as 'equating coefficients’. 

Firstly, we look at the vector a. On the left there is one of them 

and on the right we have k, - (-k ) =k +k,. 

This leads to the equation: k +k,=1 

Equating the coefficients of b we get 0 = k, - k; 

This pair of simultaneous equations is now solved: 

k, - k= 0 implies that k, = k. 

This can be substituted into the other equation to give: 

k,+k =1 so that k, = k, = % and we have proved that the 

diagonals bisect one another. 

Not that the proof works for all quadrilaterals which have 

pairs of opposite sides parallel (square, rectangle & rhombus) 

but not for the kite. 

The part of the proof in which this was used is: BC=0A=a 

  

The medians of a triangle join a vertex to the mid-point of the 

opposite side.



    

o @
 

There are several ways of setting up the basis vectors. This one 

avoids fractions: 

¢}
 

< O @ 

Following the method used in the previous example: 

Using the fact that P lies on AD: AP= 4 x AD 

and P lies on BC: BP=4,xBC . 

Using the mid-point conditions: OA =2a and OB=2b. 

Also: AD=A0+0D and BC=BO+0C 

=-2a+b =-2b+a 

In triangle APB: AB= AP+PB 

=AP-BP 

=# x AD— 4, xBC 

=k x(-2a+b)-4 x(-2b+a) 

but also: AB=AO+OB 

=-2a+2b 

This leads to the vector equation: 

—2a+2b=4 x(-2a+b)—4,x(-2b+a) 

Equating the coeflicients of a: —2=-24 -4, 

2=2k+4, 

and of b: 2=4 +24, 

V) 

  

Subtracting twice the second equation from the first gives: 

2-2X2=2k+4—2(A +24,) 

2=k—4k 
2 k=3 

and substituting this in the second equation gives: 

2 
2=k+2X— 

3 

k=2-3 
3 

-2 
3 

This is the result we were asked to prove. Note that this proof 

is not unique. Can you find a neater way of doing it? 

A s S ey WU T e B 

Exercise C.11.4 

Prove, using vectors, that: 

1. The line joining the mid points of two sides of a 

triangle is parallel to the third side. 

2. The medians of a triangle are concurrent. 

3. The altitudes of a triangle (lines joining each vertex that 

are perpendicular to the third side) are concurrent. 

4. The space diagonals of a cuboid are concurrent and 

bisect one another. 

5 The altitudes of a regular tetrahedron are concurrent. 

6. The diagonals of a regular hexagon bisect one another. 

7s The length of each side of a triangle is always less than 

the sum of the lengths of the other two sides. 

8. A 

c B 

AE:AC = AD:AB = DE:BC 
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s 2 The vectors concerned are: 

Application 
1. Wind 

Crosswind Landing 
The crosswind is coming from the pilot's right and resolves 

This small aeroplane is landing at a short grass landing strip into a component straight down the runway (green) and a 

on a coral atoll. component across the runway (blue). 

It appears that the aeroplane is heading almost straight for ) 

the camera. Wind 

vector 

H
e
a
d
w
i
n
d
 

ve
ct

or
 

Crosswind 

vector 

2 The aeroplane      
Fortunately for the photographer, this is not so. The aircraft is 

appraching the landing strip 'crabwise’ in order to offset the 

drift created by a cross wind. 

A 

g 
g 

£ 
o 

) 
S : o 

10
31
22
A 

A}
1D

0[
3A

 
[9
AR
1}
 J

O 
U
0
 

  v 
= 

g 
9 < 

g 

< 

Crosswind 

vector 

The crosswind component of the red vector balances the blue 

vector and the aeroplane travels straight down the runway. 

Without this, the aeroplane would drift off the runway line 

to the pilot's left during the approach. Just before touchdown, 

the pilot will straighten the aeroplane by using left rudder 

to 'yaw' it to the left. Some right aileron is also necessary to 

counteract the roll that happens during this 'de-crabbing'. 

Can you see why? 

  

Ke
mu
ny
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Definition of the Scalar Product 

The scalar product (or dot product) of two vectors is defined 

g
 

|
~
<
 

where 0 is the angle between the two 

vectors and may be an obtuse angle. The 4 

angle must be measured between the fl 

directions of the vectors. That is, the angle 

between the two vectors once they are 

joined tail to tail. 

b 

<) 
The three quantities on the right-hand b 

side of the equation are all scalars and it 

is important to realise that, when the scalar product of two 

vectors is calculated, the result is a scalar. 

  

Let @ = 2i-3j+k and b = i+j—k ,thento determine the 

scalar product, a e b, we need to find: 

al, 16l and cos®, where 0 is the 
angle between a and b. 

> Finding: 

6 = PR [ 
ol = JEF T CIR = . 
Finding cos® requires a little work. Relative to a common 

origin O, the points A(2, -3, 1) and B(1, 1, -1) have position 

vectors a and b. 

Before making use of the cosine rule we need to determine 

the length of AB. Using the distance formula between two 

points in space, we have: 

AB = J(1-2)2+(1 - (-3))2+(-1-1)2 

- Ji¥16+4 
= 21 

Cosine rule: 

AB2 = OA2+0B2-2-0A-OB- cosf 

(J21)? = (J14)?+ (J3)2 -2 - J14- f3 - cosB 

21 = 14+3-2./42cos0 

s.cos8 = i 
Ja2 

Next, from the definition of the scalar product: 

aeb = |a||b|cosB, we have 

2 aeh = Jlax . fx——== =2 
42 

R RN WO SRR st Wl e VTR ) 1) 

The solution to Example C.11.8 was rather lengthy. However, 

we now look at the scalar product from a slightly different 

viewpoint. 

First consider the dot product i e i: 

Using the definition, we have that 

ioi=lillilcos0 = 1x1x1 =1 

(the angle between the vectors i and i is 0 and so cos® = 
cos0 =1). 

Next consider the product i ej: 

Using the definition, we have that: 

iej = |i|ljlcos90 = 1 x1x0 =0 

(the angle between the vectors i and j is 90° and so cos6 = 
c0s90° = 0). 

Similarly, we end up with the following results for all possible 

combinations of the i, j and k vectors: 

and 

Armed with these results we can now work out the 

scalar product of the vectors a = xji+y;j+zk and 

b = xyi+y,j+ 2,k as follows: 
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aeb = (xyi+yjtzk)e(xyity,j+zk) 

Il X xy(i @) +x v,y (it j) +x z(ix k) 

Ty Xt D)y i)t vzt k) 
+zpxglh i)t zyyy(ke j)+zyzy(k e k) 

aeb = x\xy+ty v, tzz; 

That is, if: 

Using this result with the vectors of Example 4.2.1, 2i—3j + k 
and i+j—k we have: 

Qi-3j+k)e(i+j—k) = 2x1+(=3)x1+1x(-1) 
931 

=2 

This is a much faster process! 

However, the most usual use of scalar product is to calculate 

the angle between vectors using a rearrangement of the 

definition of scalar product: 

   

  

a In using the scalar product, it is necessary to calculate 

the magnitudes of the vectors. 

|=i+3j]=y(-17 +3* =10 and 

|-i+2j=y(-1)+2’ =5 

Next, calculate the scalar product: —i+ h\_fl 

(—i+3j)e(—i+2) = —Ix—1+3x2=7 
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aebh 
  

. o o T 7 ~ 8O 
Finally, the angle is: cos® ol —mxfizae 8 

b 
0 
5 || = 02+ (=5)2+42 = Ja1 

4 

-5 

and || -1 [ = NS H(EDIH(3)? = W35 
=3 

Next, the scalar product: 

0 -5 
s o] Jp [ = 0x(=5)+(=5)x(=1)+4x(=3) = -7 

4 -3 

Finally, the angle can be calculated: 

ashb___ -7 _,g~101° 
lallol /a1 x /35 

The use of cosine means that obtuse angles between vectors 

(which occur when the scalar product is negative) are 

calculated correctly when using the inverse cosine function 

on a calculator. 

cosO = 

Properties of the Scalar Product 

Closure The scalar product of two vectors is a scalar (i.e. 

the result is not a vector). The operation is not closed and so 

closure does not apply. 

Commutative 

Now,a e b = |a||b|cos® = |b||alcos® = bea 

That is, @eIBISIBRG. 

Therefore the operation of scalar product is commutative. 

Associative If the associative property were to hold 

it would take on the form 

(aeb)ec = ae(bec). However, a®b is a real number 

and therefore the operation (a ® b) e ¢ has no meaning (you 

cannot ‘dot’ a scalar with a vector). 

Distributive The scalar product is distributive (over 

addition).



We leave the proof of this result as an exercise - it was assumed 

in the discussion on the previous page. 

Identity As the operation of scalar product is not closed, an 

identity cannot exist. 

Inverse As the operation of scalar product is not closed, an 

inverse cannot exist. 

Note that although the scalar product is non-associative, the 

following ‘associative rule’ holds for the scalar product: 

If ke R, then, ae (kb) = k(aebh) 

Special cases of the scalar product 

Perpendicular vectors 

If the vectors a and b are perpendicular then: 

aeh = \allblcos% =0. 

(Note: We are assuming that a and b are non-zero vectors.) 

Zero vector 

For any vector @, @« 0: a0 = a|[0[cos® = 0 

Parallel vectors 

If vectors a and b are parallel then, a ¢ b = |al|b|cos0 = |al|b| 

If a and b are antiparallel then, a5 = |al[b|cost = —|a||b| 

(Note: We are assuming that @ and b are non-zero vectors.) 

Combining the results of 1 and 2 above, we have the important 

observation: 

If aeb = 0 then either: 

1. a and/or b are both the zero vector, 0. 

Or 

2. aand b are perpendicular with neither @ nor b being 

the zero vector. 

Notice how this result differs from the standard Null Factor 

Law when dealing with real numbers, where given ab = 0 then 

a or b or both are zero! That is, the cancellation property that 
holds for real numbers does not hold for vectors. 

S T e RS SR I 
e 

A nice application using the perpendicular property above 

can be seen in the next example. 

  

a Axthorp is 3 km east and 9 km north of Oakham so 
— 
OA = 3i+9j 

—s — —> 
b OB = OA +AB = 3i+9j+5i—5j = 8i+4j 

= 2= 2. « 08 = 3(0A) = $(3i+9)) = 2i+6j 

-y 
BS = BO+0S = —(8i+4j)+2i+6j = —6i+2j 

d The next step is to calculate the angle between ap 

and BS by calculating the scalar product of the two 

vectors: 
— = 
OSeBS = (2i+6j)e(—6i+2j) =2X(—6)+6x%x2 =10 

— — 
This means that OS and BS are at right angles to each other. 

It follows that the bus stop is the closest point to Bostock on 

the Oakham to Axthorp road. 
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Example C.11.11 

Find the value(s) of m for which the vectors 
2mi+mj+8k and i+3mj—k are perpendicular. 

      

As the two vectors are perpendicular, then: 

(2mi+ mj+8k)e (i+3mj—k) = 0 

It =2m+3m2-8 =0 

3mi+2m-8=0 

S Bm-4)(m+2) =0 

om= ;lor m = -2 

Example C.11.12 

Find a vector perpendicular to u = 4i—3j. 

  

Let the vector perpendicular to u = 4i—3j be v = xi+yj. 

Then,as u Lv=uev = 0 sothat (4i—3j) e (xi+yj) =0 

sdx=3y =0 -(1) 

Unfortunately, at this stage we only have one equation for 

two unknowns! We need to obtain a second equation from 

somewhere. To do this we recognise the fact that if v is 

perpendicular to u, then so too will the unit vector, v, be 

perpendicular to u. 

Then,as [v] = 1 = Jx2+y2 = 1ox2+32 = 1 -(2) 

_ 4 
From (1) we have that y = 3% - (3) 

Substituting (3) into (2) we have: 

\2 
x2 *(i\J = 1252 =9y = i% 

3 5 

Substituting into (3) we have: y = + 

  

Therefore, both v = %iJr%j and v = 

perpendicular to u. o 
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Example C.11.13 

  

Use a vector method to derive the cosine rule for the 

triangle shown. 

erTeee 

From the triangle rule for vector addition we have 

atc=boc=b-a. 

Now, using the scalar product we have: 

1l (b—a)e(b—a) 

=beb—bea—aebtaea 

= |b2-2aeb+|a? 

~lel? = 1612 + |a2 —2|al|b| cos® 

  

Example C.11.14 

Find a vector perpendicular to both a=2i+j-k and 

b=i+3j+k. 

  

Let the vector ¢ = xi+ yj+zk be perpendicular to both a 

and b. 

Then, we have that ae ¢ = 0 and bec = 0. 

From ae ¢ = 0 we obtain: 

I (2i+j—k)e (xi+yj+tzk) =2x+y—z =0 -(1) 

From bhe ¢ = 0 we obtain: 

(i+3j+k)e(xi+yj+zk) = x+3y+z=10 -(2) 

In order to solve for the three unknowns we need one more 

equation. We note that if ¢ is perpendicular to a and b then so 

too will the unit vector, ¢. So, without any loss in generality, 

we can assume that ¢ is a unit vector. This will provide a third 

equation. 

As we are assuming that ¢ is a unit vector, we have: 

lel = 1oa24)24+x2 = 1 —(3)



  

We can now solve for x, y and z: 

)+ @) 3x+4y =0 - (4) 

2x(1) - (2): 5y+3z=0-(5) 

2 2 
Substituting (4) and (5) into (3): (—gyj +y2 +(—§y) =1 

  

o 16y2+9y2+25y% = 9 

©50y2 =9 

3 
Sy =t 

) 542 

_ 4342 
YT 0 

Substituting into (4) and (5) wehave x = — ><i———] 5 = 

3.2 J2 = D goNe . fAL and z x50 = 

Therefore, +: 
2. 32, . 2, +(Mi,flj+£k1 

5107 

are two vectors perpendicular to @ and b. Of course, any 

multiple of this vector will also be perpendicular to a and b. 

As we have a seen in these examples, the scalar product is a 

very powerful tool when proving theorems in geometry. We 

now look at another theorem that is otherwise lengthy to 

prove by standard means. 

  

Consider the triangle ABC A 

as shown, where M is the 

midpoint of the base BC 
. Next, let a = AB and % 

b = AC. We then wish to 

show that AM LBC (or 

AMeBC = 0). 

B M C 

Now, AM = AB+BM = AB+.BC 

Il a+%(b—a) 

Il la+b) 

Therefore, AM s BC = %(a+b)-(b—a) 

= l(a-b—aufl-b-b—b-a) 
2 

1 
= z(v a2+ |b|2) (because aeh ~ heua) 

= 0 (because |a| = [b]) 

Therefore: 

As AM#0 and BC#0,then AMe BC = 0 = AM L BC 

i.e. the median is perpendicular to the base. 

Most graphic calculators can perform vector calculations. 

You should know how to do the basic procedures such as 

entering and saving vectors. 

         

    
RV 

2: Zero Matrix 

3: |dentity 

4: Diagonal 

5: Random 

6: Fill 

7: Submatri 

8: Augment 

9: Column A 

A: Construc| 
    
  

    

& 
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Then the calculation continues: 

Vectors can be entered as needed and arithmetic performed 

on them by pressing F4-MATH and F1-MAT/VCT. This 

provides a screen from which common vector (and matrix) 

layouts can be accessed and basic operations performed. 

If using 2 by 1 vectors, a blank vector of the right size can be 

found by pressing F4. The values can now be entered from 

the keyboard. 

2 
[de)R 

A7) 

  

   

[ %] 

PERAEEEIIEY PESHERSE T |       
Many applications will make use of the same vectors. 

These can be entered (still in Run mode) by using F3-MATH/ 

VCT. 

This opens a screen for defining matrices and vectors. 

  

  

DELETEJDEL-ALL 

A 3 by 1 vector can now be entered as Mat A 

(MeV]       
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ROW-0P] ROW JCOLUMN/N=DINM] 

-1 

If a second vector is stored 2 3 

4 

both can be accessed repeatedly to perform calculations. 

      

The vector A is accessed by pressing OPTN, F2, F1 followed 

by ALPHA A to name the vector. 

, 
2xMat A-3xMat B 

  

  

     

  

O 

      
Scalar product calculations can be found by scrolling twice 

(using F6) to the right and pressing F2. 

B HatiRadfornd 
DotPfMat A, Mat B) i 

u 

  

  

     



e    
Exercise C.11.5 f j+3k and —j -2k 

1 Find the scalar product, @ ¢ b, for each of the following: 

  

ald =2 2l 
—1 | an 

6] = 4‘ “ i _5 -5 
40° - 

=2 5 
b 120" | h 7 |and| 2 

-7 -5 
< | la| =5 

| a [b] = 10 

o < 30° 4. Two vectors are defined as @ = 2i+xj and b = i—4j 

b Find the value of x if: 

2. Find the scalar products of these pairs of vectors. a the vectors are parallel. 

a 3i+2j and 2i +3j b the vectors are perpendicular. 

b 3i+7j and 2i +3j 5. If a=2i-3j+k,b=-i+2j+2k and ¢ = i+k, 

find, where possible, 

c 3i-j and -2i +2j 

a aeh b (a—b)ec 

d  6i+j—k and —7i—4j+3k 
¢ aebhec d (a—b)e(a+b) 

e —j+5k and —4i+j+k 
e ¢ f bel 

£ —i+5j+4k and Si-4k ¢ 

0 7 6. If @a=2i-3j, b=2ABi—j and ¢ =i+j, find, 
g 6 [and| 2 where possible: 

1 -6 
a ae(b+c)+be(c—a)tce(a—b) 

-3 3 

h -1 |and| 2 b (b—c)e(c—b)+[p’| 
7 1 

c 2la) —Besc 

   
| ~6 7 

i ~1 |and| 3 d @ by c 
lal ~[B] e 

7 5 

3 Find the angles between these pairs of vectors, giving 7. Find the value(s) of x for which the vectors xi+j—k 

the answers in degrees, correct to the nearest degree. and xi - 2xj—k are perpendicular. 

a —4i—4j and - 3i+2j 

b i—j and 3i+6j 8. P, Q and R are three points in space with coordinates 

(2, -1, 4), (3, 1, 2) and (-1, 2, 5) respectively. Find 

c —4i—2j and —i-7j angle Q in the triangle PQR. 

d —7i+3j and —2i—j 

e i+3j+7k and 6i +7j -k 
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10. 

11. 

12. 

13. 

14. 

15. 

16. 

17 
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Find the values of x and y if w = xi+2yj—8k 

is perpendicular to both v =2i—j+k and 

w = 3i+2j—4k. 

Find the unit vector that is perpendicular to both 

a = 3i+6j—k and b=4i+j+k. 18. 

Show that, if u is a vector in three dimensions, then 19. 

u= (uei)it(uej)j+(uek)k. 

a 

b 

Find a vector perpendicular to both 

a=—i+2j+4k and b = 2i-3j+2k . 

Find a vector perpendicular to 2i +j—7k . 20 

Show that if @ —b| = |a+b|, where a#0 and b#0, 

then a and b are perpendicular. 

21. 

Ifaeh = aec wherea|0|b, what conclusion(s) can 

be made? 

Using the scalar product for vectors prove that 

the cosine of the angle between two lines with 22, 

direction cosines /. m. 7y and /5, m,, n, is given by 

cos® = [ ly+mymy+nny. 23, 

Find the cosine of the acute angle between: 

~ two diagonals of a cube. 

the diagonal of a cube and one of its edges. 

On the same set of axes sketch the graphs of: 

x+3y-6=0and2x-y+6=0, 

clearly labelling all intercepts with the axes. 

Find a unit vector along the line: 

x+3y-6=0. 

  

J 

i 2x-y+6=0. 

e Hence find the acute angle between the two 

lines x+ 3y -6=0and 2x - y+ 6 =0. 

Find a unit vector a such that a makes an angle of 
45° with the z-axis and is such that the vector i - j + 

a is a unit vector. 

Using the scalar 
product for vectors 
prove Pythagoras’s 
Theorem for the 

triangle ABC shown. A 

Prove that an angle 

‘ aright angle. B A C 
inscribed in a semicircle is 

In the trapezium 

shown, BE:BC = 1:3. 

D C 

Show that 3AC e DE = 2(4m? —n?2) 

where |[AB| = m, [DC| = 2|AB| and [DA| = n 

Prove that the altitudes of any triangle are concurrent. 

An oil pipeline runs from a well (W) to a distribution 

point (D) which is 4 km east and 8 km north of the 

well. A second well (S) is drilled at a point 9 km east 

and 7 km south of the distribution point. It is desired 

to lay a new pipeline from the second well to a point 

(X) on the original pipeline where the two pipes will be 

joined. This new pipeline must be as short as possible. 

a Set up a suitable vector basis using the first well 

as the origin. 

— —> — 
b Express WD, WS, DS in terms of your basis. 

— 
c Write a unit vector in the direction of WD . 

d If the point X is d km along the pipeline from 

the first well, write a vector equal to WX . 

— 
e Hence find the vector WX such that the new 

pipeline is as short as possible.



Link to a 3-d visualisation of two vectors, 

the plane in which they exist and a vector 

perpendicular to this plane. 

  

Vector equation of a line in two 

dimensions 
We start this section by considering the following problem: 

Relative to an origin O, a house, situated 8 km north of O, 

stands next to a straight road. The road runs past a second 

house, located 4 km east of O. If a person is walking along 

the road from the house north of O to the house east of 

O, determine the position of the person while on the road 

relative to O. 
.\II 

   We start by drawing a diagram A0, 8 

and place the person along 

the road at some point P. 

We need to determine the 

position vector of point P. 

   
We have: 

r=0P=0A=AP 

Now, as P lies somewhere along AB, we can write: 

AP=AAB , where 0 < X < 1, so that when A = 0 the person is 

at A and when A = 1 the person is at B. 

Next, AB=AO+0OB=-8j+4i,and so we have: 

r=8j+A(-8j+4i). 

This provides us with the position vector of the person while 

walking on the road. 

We take this equation a little further. The position vector of P 

can be written as r=xi+ yj and so we have that 

xi+ yj=8j+A(-8j+4i) 

That is, we have xi+ yj=4Ai+(8—81)j meaning that 

x=4A and y=8-81. 

The equations x=44 - (1) and y=8-84 - (2) are known 

as the parametric form of the equations of a straight line 

  

Next, from these pill"dl'll(‘tfic equations, we have: 

A= % ~(3)and A= —f”_’gs ~@ 

X _y=38 
Then, equating (3) and (4) we have Pl This equation is 

known as the Cartesian form of the equation of a straight line. 

We can go one step further and simplify this last equation. 

x M=8 
4 -8 
  S 2x=py-8& y=-2x+8 

which corresponds to the Cartesian Equation of the straight 

line passing through A and B. 

This approach 

to describe the 

position of an 

objcct (or person) 

is of great value 

when dealing with 

objects travelling 

in a straight line. 

When planes are 

coming in for 

landing, it is crucial that their positions along their flight 

paths are known, otherwise one plane could be heading for a 

collision with another plane in the air. 

  

We now formalise the definition of the vector equation of 
aline in a plane: 

The vector equation of a line L in the direction of the vector b, 

passing through the point A with position vector a is given by 

r=a+ Ab where \ is a scalar parameter. 

  

The vector equation of a line L in the direction of the vector 

b, passing through the point A with position vector a is given 

by: 

where A is a scalar parameter. 

Proof: 

Let the point P(x, y) be any point on the line L, then the 

vector AP is parallel to the vector b. 
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3 = [0Y ., 1 writtenas r = (8)* x(il) » 
r = OP 

=DA+4R As M varies, different points on the line are generated, and 

sr=a+ib conversely any point on the line has a corresponding value of 

A. For example, substituting A = 3 gives the point (3,5) and the 

So the equation of L is given by r = a+1b as required. point (8,0) corresponds to A = 8. 

We can now derive two other forms for equations of a line. NB: the vector equation (in parametric form) is not unique. 

We start by letting the coordinates of A be (a;,a,) , the The equation r = gl + A ’225 is an equally valid description 

; of the line, and in this case substituting A = 0.5 generates the 

coordinates of P be (x, y) and the vector » = (;') ‘ point (3,5). 
2 

From r = a+ib we have: 

()= ()60 =0) = () 

T s PR e 1 S et A NS ] et B AR 

This provides us with the: 

Parametric form for the equation of a straight line: 

Next, from the parametric form we have: 

  

u Rather than depend on a 
A4 
  

  

  

x=a +kb&x—a, = kb &A= 3 -(1) standard formula, it is always 

. JH’ helpful to visualise problems 

and y=aythbheyoa = Myehs 0= - (2) such as these. This is particularly 

2 useful when we move onto 

Equating (1) and (2) provides us with the: straight lines in space. We draw 

a general representation of this 

Cartesian form for the equation of a straight line: situation and work from there. 

Let the point P be any point on the line L with position vector 

r,then OP = OA + AP 

However, as A and P lie on the line L, then AP = A(3i—4j) . 

Therefore, r = (2i+5j)+M3i—4j) 

This represents the vector equation of the line L in terms of 

the parameter i, where A€R. 

The equation could alsobe writtenas, r = (2+3R)i+ (5 - 41)j      
The vector equation of the line L is based on finding (or 

using) any point on the line, such as (0,8), and any vector in 

the direction of the line L, such as ( 1| ) ; 

The position vector of any point R on the line can then be 
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‘We start with a sketch of the situation described: 

Let the point P be any point 
on the line L with position 

vector r, then 

OP = OA +AP 

Then, as : 

AP AB= AP = [ AB 

where e R. 

This means that we need to find the vector AB which will be 

the vector parallel to the line L. So, we have: 

AB = A0+ OB = 7[;)%2) - (:J - 4(}) 

Therefore, from  OP = OA+AP we have 

op = (}J + xx4[}) 

That is, r= (1) + t(}) where 1 = 42 

This represents the vector equation of the straight line L. 

To find the parametric form of L we make use of the equation: 

-()04)- 
As P(x, y) is any point on the line L, we write the vector 

equation as: 

6)- ()0 
From where we obtain the parametric equations, x = 1+¢ 

and y = 4+, 

To find the Cartesian form of L we now make use of the 

parametric equations. 

From x = 1+/ wehave /1 =x-1 - (1) and from y = 4+¢ 

we have t = y—4 -(2) 

Then, equating (1) and (2) we have x-1=y-4 (or 

=x+3 ) 

    

r= (30 = ()4(3) = (3)H3) whichisin the 

form r=a+ib ). 

The direction of the line L is provided by the vector b, i.e. 

(5} -5 

To find the unit vector we need 

  
( _25 ]‘=\/4+25=\/2’9. 

o1 (2 b JE(- 5) . 

Using the point P(x, y) as representing any point on the line 

L, we have that r = é 

Therefore, we can write the vector equation as U) = G v g;:) 

From this equation we then have: 

x=3+2%k =(1)and y=5-51 -(2) 

We can now find the Cartesian equation by eliminating the 

parameter A using (1) and (2). 

From (1): A= % : 

From (2): A= % 

Therefore, x=3 _y-5 
2 -5 
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L. If finding the angles between two vectors, then the 
answer can either be acute or obtuse depending on the 

original arrangement between the two vectors. 

2. If finding the angles between two lines, the answer 

should be stated as an acute angle, since we will 'create’ 

two vectors from the lines and hence, depending on 

how we have created the vectors, the angle may be 

obtuse or acute. 

We must first express the lines in their vector form. To do this 

we need to introduce a parameter for each line. 

  Let 22 = 2L =] giving the parametric equations: 
4 3 

x=2+4\ and y=-1+3% . 

We can now express these two parametric equations in the 

vector form: 

()= %) = B)+6) 
This vector equation informs us that the line 

parallel to the vector [gj ; 

In the same way we can obtain the vector equation of the line: 

  x+2 _y-4 

=1 2 

  Let * +12 = % = ¢ giving the parametric equations: 

x=-2-t and y = 4+21 . 

From here we obtain the vector equation: 

X\ - (—2—-1t) _ (2 =1 

() =G50 = ()6 

This vector equation informs us that the line * ;   

parallel to the vector [’JJ ; 

To find the angle between the two lines we use their direction 

vectors, (4) and (=) along with their scalar product: 

()G)-16HE) 
= —4+6 = J16+9Xx /1 +4cosb 

cos 6 

  

2 
& cosh = — 

5.5 

=.0=79°42" 
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Exercise C.11.6 

L. For the straight line with equation r = a+1b where 

a =i+2j and b = -2i+3j ,find the coordinates of 

the points on the line for which: 

i A=0 ii A =3 iii A I | o 

Sketch the graph of r = i+2j+A(-2i+3j) 

2 Find the vector equation of the line passing through 

the point A and parallel to the vector b, where: 

a A=(2,5), b=23i-4j 

b A=(-3,4) , b=-i+5f 

c A=(0,1), b=7Ti+8 

d A=(1,-6) , b=2i+3j 

o AaAfn,b:G@ 

f AE(],Z),b:G) 

3. Find a vector equation of the line passing through the 
points A and B where: 

a A(2,3), B(4,8) 

b A(L5), B(=2,1) 

c A(4,-3) , B(-1,-2) 

4. Find the vector equation of the straight line defined by 

the parametric equations: 

a x=9+Ay=5-31 

b x=6-4ty=-6-2t 

c x=—1-4)y=3+8)\ 

d \=I+21p.,y=2—lu 
3



LT e RS 
5, Find the parametric form of the straight line having 

the vector equation: 

7 =3 

= ()(3) a r=(o)e(d) ® 
r=13J%3 ? - 8.4;0221 

. (5) E(] d ., (As 011) 

6. Find the Cartesian form of the straight line having the 

vector equation: 

Y Write the following lines in vector form: 

ol 
a y73x+2 b ¥ = %5 

C 2y-x=6 

8. Find the position vector of the point of intersection of 

each pair of lines: 

o (1)) and = (5) () 
o= () (5) and = (B)ru(3) - 

9. Find the equation of the line that passes through the 

point A (2, 7) and is perpendicular to the line with 

equation r = —i—3j+A(3i—4j) 

10.  Let the position vectors of the points P(x;,»,) and 

Q(xp,72) be p and q respectively. 

Show that the equation r=(1-A)p+Aq represents 
a vector equation of the line through P and Q, where 

reR. 

Extra questions 

  

  

Lines in three dimensions 

In three-dimensional work, always try to visualise situations 

very clearly. Because diagrams are never very satisfactory, it 

is useful to use the corner of a table with an imagined vertical 
line for axes; then pencils become lines and books or sheets 

of paper become planes. 

It is tempting to generalise from a two-dimensional line like 

x + y = 8 and think that the Cartesian equation of a three 

dimensional line will have the form x + y + z = 8. This is not 

correct — as we will see later this represents a plane, not a 

line. 

  

We approach lines in three dimensions in exactly the same 

way we did for lines in two dimensions. For any point P(x, y, 

z) on the line having the position vector r, passing through 

the point A and parallel to a vector in the direction of the line, 

b say, we can write the equation of the line as r = a + Ab. 

So, for example, the line passing through the point (4, 2, 5) 

and having the direction vector i — j + 2k can be written as: 

4 1 

r=| 2 |+4] -1 

5 2 

Or, it could also have been written in i, j, k form as 

r=4i+ 2j +5k +\(i - j +2k) 

As for the case in 2-D, the parametric form or Cartesian form 

of the equation is obtained by using a point P(x, y, z) on the 

line with position vector: 

X X 4 1 

r=| y |sothat| y |=| 2 [|[+A] -1 

z z 5 2 
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From here we first get the parametric equations: 

x=4+MAy=2-handz=5+2A. 

Solving each of these for A, we get: 

Z—5 
A=x—4=2—py="—0 

¥ 4 

The parameter A plays no part in the Cartesian equation, so 

we drop it and write the Cartesian equation as: 

z=5 xy—4=2—y=""". 
s 4 

It is important to be clear what this means: if we choose x, y 

and z satisfying the Cartesian equation, then the point P(x, 

¥, z) will be on the line. 

For example x = 10, y = -4 and z = 17 satisfies the Cartesian 

equation, and if we think back to our original parametric 

equation we can see that: 

10 4 1 
-4 |=| 2 |+6] -1 
17 5 2 

To convert a Cartesian equation into parametric form 

we reverse the process and introduce a parameter A. For 

example if the Cartesian equation is: 

3 1 ite: 

AL _p2 26 4 
3 2 4 

x=1+34 

y=-2+21 

z=6+44 

1 3 

r=| =2 |+4| 2 

6 4 

You will probably have noticed the strong connection 

between the numbers in the fractions in the Cartesian form 

and the numbers in the vectors in the parametric form. 

Consider the Cartesian form of any straight line passing 
through the point P(x,,y,.z)) : 
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From this equation we obtain the parametric form of the 

straight line: 

  

which then leads to the vector form of the straight line: 

  

That s, the denominators of the Cartesian form of a straight 
line provide the coeficients of the directional vector of the 
line. This is an important observation, especially when 

finding the angle between two lines when the equation of 
the line is provided in Cartesian form. However, rather 

than simply committing this observation to memory, it is 
always a good idea to go through the (very short) working 
involved. 

  
We start by sketching the line: 

  
The direction vector of the line is 3i-2j+ & and as the line 

passes through the point (4, 6, 3), the vector equation of the



  

line is given by r = (4i+6j+3k) + M(3i-2j+ k) 

From the vector equation we obtain the parametric form of 
theline: x = 4+3%,y = 6-2% and z =3+A . 

From these equations we have, % = % , A=2=% and 
_z-3 . 

Tl 

Then, eliminating A we have E%fl - g = :%3 or 
x—=4 _y-6 _ 5.3 

3 -2 - 

which represents the Cartesian form of the line. 

  

We make a very rough sketch — 

there is no point in trying to 

plot A and B accurately. Let the 

position vector of any point P 

on the line be r. 0 

Then the vector form of the line is r = OA + LAB. 

Now, OP =r = OA+AP 

But AP =/AB .. r=0A+/AB and 

AB = AO+0OB = ~-OA+0OB 

2 4 2 
AB=—| 1 |+| o |=| -1 |andso, 

1 3 2 

2 2 

r=l 1 |+4| 41 

2 

   

    

Because the lines are given in their standard Cartesian form, 

we know that the denominators represent the coefficients of 

the direction vectors of these lines. As the angle between the 

lines is the same as the angle between their direction vectors 

we need only use the direction vectors of each line and then 

apply the dot product. 

For L, the direction vectoris b, = 2i—j+ J3k and for L, 

itis b, = i+j+ J3k. 

Using the dot product we have: 

by * by = |By||By|cos® 
Qi—j+ Bk) e (i+j+ BBk) = 8% 5c0s0 

2-1+3 = J/40cos8 
4 

cosh = — 
J40 

-0 = 50°46" 

  

X2+l 44—y 
    From the Cartesian form of the line 3 2 z=1 we 

obtain the parametric form: 

x=-1+3\y=4-2\andz=\ 

‘We can then write this in the vector form 

r=-i+4j+\3i-2j+k). 
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Comparing the direction vectors of the two lines we see that: 

— 6i+4j - 2k =-2(3i - 2j + k) 

and so the direction vectors (and hence the lines) are parallel. 

It is worth emphasising, that lines will be parallel or 

perpendicular if their direction vectors are parallel or 

perpendicular. 

1; If the two lines are perpendicular we have 

byeb, = 0= xx,+y vy +tz1z; =0 

2. If the two lines are parallel we have b, = mby, m#0 

  

We first need to determine direction vectors for both L and 

M. 

For L: Let the points be A(4, 3, 9) and B(7, 8, 5), then a 

direction vector for L, 

Tetf 5 

b, (for example), is given by 5, = [8—3] = [5 J . 

5-9) (4 
For M: Let the points be X(12, 16, 4) and Y(k, 26, -4), then a 

direction vector for M: 

k—12 k—12 

b, (for example), is given by b, = [26— 16] = [ 10 } 

44 -8 
a If LM we must have that b, = cb,.ce R. 
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b If L is perpendicular to M, we must have that 

byeb, =0 . 

3 k—12 

ie. [SJO{ 10 ]ZO:}(k—]2)+50+32:0 

-8 

o3k = 46 ok = 4‘% 

Exercise C.11.7 

1. Find the vector form of the line passing through the 

point: 

a A(2, 1, 3) which is also parallel to the vector 

i—2j+3k . 

b A(2, -3, -1) which is also parallel to the vector 

—2i+k. 

2. Find the vector form of the line passing through the 

points: 

a A4(2,0,5) and B(3,4,8) . 

b A(3,-4,7) and B(7,5,2) . 

¢ A(-3,4,-3) and B(4, 4, 4). 

3. Find the Cartesian form of the line having the vector 

form: 

"B 
A - i 

4. Find the Cartesian equation of the line passing throug} 

the points A(5, 2, 6) and B(-2, 4, 2). Also, provide the 

parametric form of this line. 

5. For the line defined by the parametric equation: 

x=3+2t,y=4-3t and z=1+5r, find the 

coordinates of where the line crosses the xy-plane.
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6. Convert these lines to their parametric form: 

=2 
a %=7—5:2(3~4) 

2x-1 4-z 
b =y= 

3 ¥ 2 

  

    

7: Convert these lines to their Cartesian form: 

4 
b r=2i+k+u(j-3k) 

a r= 

  

8. Show that the lines %422—/:5—2 and 

4=x = 3ty = otz are parallel. 
4 2 

9. Find the Cartesian equation of the lines joining the 
points 

a (~1,3,5) to (1,4, 4) 

b (2,1,1) to (4,1,-1) 

10. a Find the coordinates of the point where the 

line: 
2 -1 

r= [ 5 J" /[ 2 ] intersects the x-y plane. 
3 1 

b The line XT_?’:)/+2:4_TZ passes through 

the point (a, 1, b). Find the values of @ and b. 

Extra questions 

    

Intersection of two lines in 3-D 

Two lines in space may: 

15 intersect at a point, or 

2. be parallel and never intersect, or 

3. be parallel and coincident (i.e. the same), or 

4. be neither parallel nor intersect. 

Of the above scenarios, the first three are consistent with 

our findings when dealing with lines in a plane (i.e. 2-D), 

however, the fourth scenario is new. We illustrate these now. 

1. 

  

   X 

Two lines that meet at (at least) one point must lie in the same 

plane (cases 1 and 3). Two intersecting lines or two parallel 

lines are said to be coplanar (cases 1, 2 and 3). Two lines 

which are not parallel and which do not intersect are said to 

be skew. Skew lines do not lie on the same plane, i.e. they are 

not coplanar (case 4). 

Lines lying on the xy-, xz- and yz- planes 

From the Cartesian form of the straight line, 

  LR Y BT et 
a b ¢ 

A PH o p(x-x)=aly- 1) - () a b 

A I o (x-x)=a(2-2) - () a ¢ 

%:%Z'fir(r}fi):b(zw) -03) 

Equations (1), (2) and (3) represent the planes perpendicular 

to the xy-, xz- and yz planes respectively. Each of these 

equations is an equation of a plane containing L. The 
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simultaneous solution of any pair of these planes will produce 

the same line. In fact, the three equations are not independent 

because any one of them can be derived from the other two. 

If any one of the numbers a, b or ¢ is zero we obtain a 

line lying in one of the xy-, xz- or yz planes. For example, 

consider the case that ¢ = 0 and neither a nor b is zero. 

X—x; _ y-» 
In such a case we have, =     and z = z; meaning 

that the line lies on the plane containing the point =z = z; 
and parallel to the xy-plane. 

3-d image showing that skew lines may 

appear to intersect from some viewpoints. 

  

  

  

  

For convenience’ we sometimes write 

the equation as 

  

A = , although 

clearly, % has no meaning. 

  

We start by finding the vector equations of both 

lines. For L we have a direction vector given by 

by = (11=1)i+(=2-2)j+ (=7~ (-1))k = 10i-4j-6k. 

Then, as L passes through A(1, 2, 1), it has a vector equation 

givenby r = i+2j—k+A(10i-4j - 6k) 

This gives the parametric form as, x = 1+104,y = 2-4) 

and z =—-1-6A - (1) 
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Similarly, we can find the parametric form for M. 

The vector form of M is given by: 

r = 2i—j-3k+p(7i-9j+6k) 

so the parametric form is given by x = 2+7u,y = —1-9u 

and z = -3+6p —(2) 

Now, as the set of coefficients of the direction vector of M and 
4 

L are not proportional, i.e. as g # % #=% , thelines Land M 

are not parallel. 
6 

Then, for the lines to intersect, there must be a value of A and 

p that will provide the same point (x;,y,,z,) lying on both L 

and M. Using (1) and (2) we equate the coordinates and try to 

determine this point (xu,yu,zc): 

1+10k = 2+70 - (3) 

2-4h=-1-9n —(4) 

“1-6L =-3+6p -(5) 

Solving for A and y using (4) and (5) we obtain: 

#z_i and l=£. 
39 39 

Substituting these values into (1), we have 

LHS= 1+10x222+7x-3 =RHS. 
39 39 

As the first equation is not consistent with the other two, the 

lines do not intersect and, as they are not parallel, they must 

be skew. 

The techniques we have been discussing can be used to solve 

problems in particle motion (kinematics). 

  

21-1 20 

Particle Aistranslated (over 10seconds):| 32—-2 |=| 30 

23-3 20



  

2 

This represents a velocity vector of | 3 | (per sec). 

2 

1 2 

The position of particle A is: 7, =| 2 |+£| 3 

3 2 

Particle B is translated (over 10 seconds): 

15—5 10 

8—-18 |=| -10 

17-7 10 

1 

This represents a velocity vector of | —1 | (per sec). 

1 

5 1 

The position of particle Bis: 7, =| 18 |+/| -1 

7 1 

If the particles collide, there is a time at which they are in the 

same position. This means that there is a value of ¢ such that: 

1 2 5 1 

2 [+£] 3 |=| 18 |+£ -1 

3 2 7 1 

1+2/=5+f=1=4 

2+3/=18—1t=1r=4 

34+2u=7+t=>r=4 

This means that: 

and the particles collide after 4 seconds.     
  

Vector from A to B is: 

4 -1 1 2 

r,—r,=| 5 |+¢ 1 |- 12 |=¢ -3 

3 0 5 -1 

3 =3 

=| =7 |+ 4 

=2 1 

The distance between the aircraft is the absolute value of this 

function. We will work with the square of this absolute value: 

|ry=r [ =(3=3¢) +(=7+42) +(=2+£)’ 

=9—18/+9£* +49—56/+161" +4—4f+1 

=62—78¢+26¢" 

We can look for the time at which this expression is a 

minimum. This is because the square root function is one to 

one and increasing. We are after the minimum and can use 

a graph to find it. As with many ‘applications’ questions, it is 

necessary to adjust the graph window. We have used Analyze 

Graph to locate the minimum. 

  

   
  

£1(c)=62-78- x+26- x> 

(15,35) 
  

ri 0.2 s       
  

The closest approach occurs at t = 1.5 and is V3.5 or about 

1.9nm. Note also that one of the pilots will need to pay 

attention to avoid hitting the ground! 

e e T o e S E R RN R S 

Exercise C.11.8 

L. Find the Cartesian equation of the lines joining the 

points 

a (-1,3,5)t0(1,4,4) 

b (2,1,1)to (4,1,-1) 
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Find the coordinates of the point where the line: 

2 —1 

a r= { 5 1+ { 2 ] intersects the x-y plane. 

1 

b The line =   3 p+2= iz passes through 
5 

the point (a, 1, b). Find the values of a and b. 

Find the Cartesian equation of the line having the 

vector form: 

1 1 2 2 

a r:{4J+/[71] b r:[lJH[J. 

-2 0 3 0 

In each case, provide a diagram showing the lines. 

Find the vector equation of the line represented by the 

Cartesian form ’%l = 1'32y = £~ .   

Clearly describe this line. 

Find the acute angle between the following lines. 

0 3 —2 ~] 

a r=| 2 |+s| 4 |ands=| 5 |+#] 2 

3 5 3 1 

2 -2 1 1 

b r=[ 1 |+s 0 and s=| 1 [+7] 1 

4 1 1 3 

  

  X¥~5 z-9 y=9 _z+9 
a Z T —y-10="—"S- x=4 =— 

=2 7 12 2 0 

b 2x—1 _y+5 _2z-1 2-x_y+3 _4-2z 

3 3 -2 2 1 

11. 

12, 

13. 

  

Find the Cartesian form of the lines with parametric 

equation given by: 

L: x=XAy=2\A+2,z=5A and 

M: x=2p-l,y=-1+3pz=1-2p 

a Find the point of intersection of these two lines. 

b Find the acute angle between these two lines. 

Find the coordinates of the point where: 

i L cuts the x-y plane. 

ii M cuts the x-y plane. 

x=2 

    

Show that the lines 5= r—o - = and 

Show that the lines % —y—2 = 7fl: and 

"'%2 = are skew. 

  

Find the equation of the line passing through the 

origin and the point of intersection of the lines with 

equations 

  

Lo ¥=2 = gy =g =2zl g =¥ 3+z and x =y % 

Find, correct to the nearest degree, the angle between 

the lines L and M. 

Find the value(s) of k, such that the lines: 

=2 _y_3-:z X L pt2_ 2 
s T il LS =k S 

perpendicular.



  

15: 

16. 

  

17. 

18. 

Find a direction vector of the line that is perpendicular 

to both: 

  

parallel? Find the point of intersection of these lines. 

‘What do you conclude? 

Two particles have position vectors: 

2 2 

= 2 |tf4 1 

10 =1 

0 3 

= 0 |+£ 2 

0 4 

Find when the particles collide. 

Find the point of coincidence of: 

=11 3 

ry=| 17 |+4| -4 
=7 2 

-1 1 

rp=[ =5 |+¢£ 3 

-3 2 

Will the particles collide? 

Find the closest approach of these two particles: 

-4 2 

r=| =2 |+ 1 

-3 2 

9 -1 

ry=| 5 |+¢4 =2 

8 -2 

Three-dimensional Geometry 

We start this section by establishing a definition: 

Right-handed system 

     

  

When dealing with 
three-dimensional 

space, three base 

vectors (not coplanar) 

must be defined. We 

also conveniently use 

base vectors that are 

mutually orthogonal 

direction of ‘motion’ 

the screw 

(at right-angles) and Y 
which are right- 

handed. 

So, what do we mean by right-handed? 

If we place a screw at some origin O and rotate it from OX 

to QY, then the screw would move in the direction OZ. This 

defines what is known as a right-handed system. This 
definition becomes important when we look at the operation 

of vector product. 

Vector Product 

Unlike the scalar product of two vectors, which results in a 

scalar value, the vector product or as it is often called, the 

cross product, produces a vector. 

We define the vector product as follows: 

The vector product (or cross product) of two vectors, @ and b 

produces a third vector, ¢, where 

and @ is the angle between @ and b and # is a unit vector 

perpendicular to both a and b, i.e. to the plane of a x b. 

This means that the vectors a, band # (in that order) form 

aright-handed system. 

We now consider some properties of the vector product. 
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Direction of a x b 

  

Plane containing @ and b 

The resulting vector, ¢ = a X b is a vector that is parallel to the 

unit vector # (unless a x b=0). 

The direction of 7 (and hence ¢) is always either: 

1. perpendicular to the plane containing @ and b which is 

determined by the right-hand rule (as shown in the 

diagram). 

or 

2. is the zero vector, 0. 

Magnitude of a x b 

The magnitude of @ x b is given by |a x b| = ||a||b|sin6 7| 

= al|b||sin6|| | 

But, |;1| =1and 0 <0 < 1t = sin O > 0, therefore, we have 

that: 

|a x b| = |al|b|sin 

Notice that from 1 and 2, we can also conclude that: 

If a x b = 0, then either: 

L. a=0orb=0orbothaandbare0or 

2. sinf0=0=0=0o0rm(as0<0<m). 

Observation 2, i.e. sin 6 = 0 = 0 = 0 or m, implies that a and 
b would be either parallel or antiparallel, which would not 

define a plane and so, the unit vector would not be defined. 

This means that for any vector, a, a X @ = 0, which brings up a 

very interesting result for our i-j-k - vector system: 
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ixi=jxj=kxk=0 

So, unlike the scalar product, where a ® @ = |a|* > 0 for a 
non-zero vector @, with the cross product we have a x a = 0, 

Also, recall that with the dot product, if the vectors @ and 

b are non-zero and perpendicular, then a ® b = 0. So, what 

can we conclude about the cross product of two non-zerg 

perpendicular vectors? 

If the non-zero vectors @ and b are perpendicular then 

0=2=3in0 = 1.axb = |a||bln. 

A
 

This means that the magnitude of |a x b| = |al|b||n| = |all5|. 

As a result of this 

property, we have 

for our i-j-k — vector 

system the following 

results: 

  

The reason for the negative signs in the above is to ensure 

consistency within the right-hand system. 

So that for example, the vectors i, j and k (in that order) form 

a right-hand system as do the vectors i, k and —j (in that 

order). A useful way of remembering which sign applies is to 

use the cyclic diagram shown: 

i 

k ] 

1.Going clockwise, we take the positive sign, 
eg kxi=j 

2.Going anticlockwise, we take the negative sign, 

eg. jxi= -k 

Operational properties 

Closure 

As a x b produces a unique vector, then the operation of 

vector product is closed.



Commutativity 

As a x b=-bx a (to conform with the right-hand system) the 

operation of vector product is not commutative. 

In fact, because of the change in sign, we say that the vector 

product is anti-commutative. 

Notice also that |@ x b| = |-b x a| = |b x a, i.e. the vector 

a x b has the same magnitude as b x a but is in the opposite 

direction. 

Associativity 

You should try to verify that (a x b) x ¢ # a x (b x ¢) (e.g. 

use @ = i, b = j and ¢ = k) and so the vector product is non- 

associative. 

Distributivity 

Also, try to verify that @ x (b + ¢) = a x b + a X ¢ and as such, 

the vector product is distributive over addition. 

Identity 

No identity element exists for the operation of vector product. 

Inverse 

No inverse element exists for the operation of vector product. 

Exercise C.11.9 

L For each pair of coplanar vectors, find the magnitude 

of their cross product. 

a la| = 5,|b| = 2 and the angle between a and b 

is 30°. 

b |u] = 1,|v] = 8 and the angle between u and v 

is 60°. 

c |a| = 3 and |b| = 4 where a and b are parallel. 

d lu| = 0.5,]v] = 12, where u and v are 

perpendicular. 

e la] = 7,|b| = 3 and a and b are anti-parallel. 

  

Sketch the following cross products for each pair of 
coplanar vectors: 

2 b 

450 @ 
la| = 2,16 =3 
Where a and b can be considered 

as lying on the surface of an 

upright table. 

  

    
la| = 2,18 = 2 

i axb i bxa iii axa 

a Ifla| = 5,|b| = 4 andaeb = 6, find laxb|. 

b Iflal = 5,|b| = 4 andaeb = 12 ,find |ax b 

If lal =2, [b] = 9 and |axb| = 15, find the angle 

between the vectors a and b. 

Ifla] = 3,]b| = 3 and laxb| =6,find aeb. 

If la| =1, |b| = /3 where a and b are mutually 

perpendicular, find: 

a [(a+b)x (a—b). 

b |(2a+b) x (a—2b)|. 
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Vector form of the Vector 

Product 

1. Component form 

The vector product is only defined when both vectors are 

three dimensional. 

4 by 
The vector product of @ = | a, | and b = | b, | is given 

by: ay by 

This is known as the component form of the cross product. 

The result is a third vector that is at right angles to the two 

original vectors. This can be verified by making use of the dot 

product. Using the ‘product’ @ e (a x b) we have: 

) aybs—asb, 

ay |®| azby—abs 

as ayby —azb, 

= a(ayby—azby) + ay(ayb) —aby) +az(a by —asb)) 

= aya,by—ajayh, +ayazhy —aya byt aya by —azayh, 

=0 

You should check for yourself that the vector product is also 

perpendicular to the second vector. 

Also, notice that in the above diagram, the resulting vector ¢, 

points in the direction that is consistent with the right-hand 

rule. 

  

2 =] 4x-2-1x4 -12 

4 (X 4 [T Ix-1-(-2)x2 |~ 3 

1 -2 2x4—(-1)x4 12 

2 -12 
4 le| 3 |=-24+12+12=0, 

1 12 

<1 ~12 
4 |o| 3 |=12+12-24=0 
) 12 

2. The Determinant form 

When vectors are given in base vector notation, a more 

convenient method of finding the Vector Cross Product 

relies on a determinant representation. Given two vectors 

a = ajitayj+azk and b = bi+b,yj+byk, the vector 

product a x b is defined as: 

  

Applying this to the vectors in Example C.11.29, where 

a=2i+4j+k and b = —i+4j—2k we have: 

41| 
42 

2 1 

=1 =2 

24 
—14 

=i +k 

            

—12i+3j+ 12k 

which agrees with our previous answer. 

Using the determinant form of the cross product we have: 

  

            

ij ok 
axb=|29 1|=1 01 —jZI +k 20 

42 32 34 
342 

= (0= (-4))i—(4—3)j+(~8—0)k 

= 4i-j-8k 

Therefore, l[a xb| = J16+1+64 = JR1 = 9



    

We first need to determine ax b : 

  

  

  

  

    

i jk 

axb=|2_11 =i7|1—j21+k -1 
—4 2 32 34 

3-42 

= 2i—j—5k 

Next, lax b| = Ja+1+25 = /30. 

Fromax b = |a||b|sin@n wehavethat la x b| = [|a||b|sin6n]| 

= |a||b|sin® , where 0 is the angle between a and b. 

la] = JA4+T+1 = J6 and || = /O +16+4 = 29,50 

30 = J6 % 295in6 & sind = fl— 
J6x .29 

.0 =24°32" 

Of course, it would have been much easier to do Example 

C.11.31 using the scalar product! 

  

The cross product, @ x b, will provide a vector that is 

perpendicular to both a and b. In fact, it is important to 

realise that the vector a x b is perpendicular to the plane that 

contains the vectors @ and b. This information will be very 

useful in the next sections, when the equation of a plane must 

be determined. 

Let ¢ be the vector perpendicular to both a and b. 

c=axb= 

i j k 
,211:i]|—j'2]+k721 

-3 -1 1 =1 1 -3 
1 =3=1 

  

  

  

      
=(=1+3)i-(2-1)j+(6-1)k 

  

= 21 —j+5k 

However, we want a vector of magnitude 5 units, that is, we 
want the vector 5¢. 

5 1 1 
¢c=—¢c=——2i—j+ 5k —2 + 5k 

lel arieos . 1= J_(" ) 

.5 S0, 5¢ = ——=(2i—j+5k). 
J30 

  

We start by drawing 

a diagram of the 

situation described 

so that the triangle 

ABC lies on the 

planes  containing 

the points A, B and 

& 

AB xAC 

    

  

(0,5, 1) 

  
Then, the vector, 

perpendicular  to 

the plane containing the points A, B and C will be parallel to 

the vector produced by the cross product ABx AC. 
1 2 1 

Now, AB = AO+OB = —|2 +[l] -1 

3 0 -3 

1 0 —1 

and AC = AO+0OC = —|2|+|5|=|3 

3 1 -2 
Then, 

1 -1 -1 x—-2-3%x-3 11 

ABXAC = |1 |X| 3 |=|-3x-1-1X2|=]|5 

-3) 2 %3 (-1)x—1 2 

o 

11 
- 1 

Let¢ = ABXAC, ..¢c = — 
¢ h/|50[7] 
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3-d realisation 

  

  

Exercise C.11.10 
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A set of vectors is defined by: 

1 -1 1 -2 

3 =3 5 3 

Find the vector products: 

a axb b axe ¢ axd 

d bxc e bxd f exd 

Find a vector that is perpendicular to both: 

1 4 
5 | and 6 

1 -2 

Verify that the vector a=i+ j+k is perpendicular to 

the cross product a x b where b = 2i-3j+ k. 

Verify that if @ = i+6j-3k, b=—i+2j+k and 

c=2i—j—k then: 

a ax(b+c)=axb+axc. 

b ax(bxc) = (aec)b—(aeh)c, 

If @ = mi+2j—k and b=2i+nj—k, 

a Find: i axa i axb 

b Show that mn -4 =0ifallb. 

Find a vector that is perpendicular to both the vectors 

i+6j+3k and i+2j—k and has a magnitude of 2. 

  

7 Find a vector that is perpendicular to the plane 

containing the points: 

a A(0, 0,0), B(0, 5,0) and C(2, 0, 0). 

b A(2,3,1),B(2,6,2) and C(-1, 3, 4). 

8. Using the cross product, find, to the nearest degree, 

the angle between the vectors: 

a u=2i—j+2k and v = —i+2j+2k. 

o
 

2 Il 3i—j+2k and b = j+k. 

9. Prove that (e +b) X (a—b) = 2bxa. 

10. Provethatae (axb) = be(axb) = 0. 

11.  Prove that |a x 5> = [a|?[b|> — (a e b)>. 

12.  What condition must the vectors a and b satisfy in 

order that the vectors a + b and a - b are collinear? 

Applications of the Vector 
Product 

1. Area 

Consider the parallelogram OACB lying on the plane, with 

the vectors a and b as shown. 

axb 

    A 
  

Then, the area of OACB is given by:



OA x |b|sin® = |a|(]b|sin®) 

=laxb| 

ie. the area of the parallelogram OACB is given by the 

magnitude of the cross product ax b . 

We can prove this by using the result 

laxb|> = |a|?|b|>—(a ® b)> where we replace aeb with 
|a||b]cos® and then carry through with some algebra. We 

leave this proof for the next set of exercises. 

  

We first need to determine the cross product, ax b : 

            

i j ok 
axb= 5 1 3=1 3 || 2 31+21k 

4 -1 1 -1 1 4 
1 4 -1 

=—13i+5j+ 7k 

Now, 

laxb| = |- 13i+5j+ 7kl = J169+25+49 = /243 

3-d realisation 

    

0 I -4 
a=|10|-|6|=| 4 

1 3 3 

sl i 2 4 
and b= g |-l 6|=|2 

3) 03 0 

Next, we calculate the vector product: 

-1 4 4 
axb=| 4 |[xX| 2|=] -8 

=2 0 —18 

Then, using the fact that 

laxb| = la|[blsin® is a 
measure of the area of the B 

parallelogram containing the 

vectors @ and b, we can deduce 

the area, A, of the triangle 

containing these vectors to be: 

In this case, the result is: 

il 7 
A=?/4~+(—8)2+(—18)' =%\/404 units’ = /101 units’ 

2. Geometric proofs 

In the same way that we used the scalar product to neatly 

prove geometric theorems, for example, proving the cosine 

rule, we find that the vector product serves just as well for 

other geometric theorems. We now use the vector product to 

prove the sine rule. 

  

We construct the vectors from the vertex (1, 6, 3) to the vertex 

(0, 10, 1) and also the vector from (1, 6, 3) to (5, 8, 3). 

These vectors are: 

Consider the triangle ABC with associated vectors as shown: 

From the diagram we A 

have that @ = b—c. b 2 3‘. 

" T-B)__ __ Then: ¢ = 5 

axa = ax(b-c) 
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But,as axa = 0, 

then 0=ax(b-c) 

ie 0=axb-axc 

=axc=axb 

|a x b 

| 
Il = laxc| 

= |alle|sin(n— B) = |a]|b|sinC 

= lalle|sinB = |a||b|sinC (as sin(m - B) = sinB) 

And so, |¢|sinB = |b|sinC 

lel sl 
sinC sinB 

3 c _ b 

Tharis; sinC  sinB” 

Similarly, we c that -~ ImIATly; We: tdn PEOVE Tk = n-= 2d 
results: 

, leading to the 

a b ¢ 

sind sinB sinC’ 

O RSN S RS Sl T, s e 

      

Exercise C.11.11 

L. Find the area of the parallelogram with adjacent 

vectors: 

a 2i+k and —i—j+3k 

b 3i—j+2k and S5i+j—k 

2. A parallelogram has two adjacent sides formed by the 

vectors: 

1 [ 14 
2 |and —| 1 

1 2 -1 

a Find the cross product of these two vectors. 

b Find the area of this parallelogram. 

c Hence find the angle between the two vectors. 

3. A triangle has vertices (-1, 2,4), (3,7, -5) and (4, 2, 3). 

Find the area of this triangle. 

164 

10. 

11. 

  

Find x, where x > 0, if the area of the triangle formed 

by the adjacent vectors xi +j—k and j—k is 12 unit?, 

Find the area of the triangle with adjacent sides formed 

by the vectors 2i+3j—4k and 2i—3j+4k . Hence 

find the angle enclosed by these two vectors. 

Show that the quadrilateral with vertices at O(4, 1, 0), 

A(7,6,2), B(5, 5,4) and C(2, 0, 2) is a parallelogram. 

Hence find its area. 

Find the area of the parallelogram having diagonals 

uw=23i—j+2k and v = i-2j+k. 

If a and b are three-dimensional vectors and 

0 is the angle between a and b, use the result 

that |ax 5> = [a|[b]>—(aeb)> to prove that 

lax b| = |a||b|sin® . 

Find, in terms of o and B the vector expressions for: 

   
ai OA 

ii OB B 

where both OA and OB () ‘ x 

are unit vectors. 

b Usethevector productto provethetrigonometric 

identity sin(o.— ) = sinocos - sinPcosor. 

Let ABCD be a quadrilateral such that its diagonals, 

[AC] and [BD], intersect at some point O. If triangle 

ABC has the same area as triangle CBD, show that O is 

the mid-point of the diagonal [AC]. 

Show that the condition for three points A, B 

and C to be collinear is that their respective 

position vectors, a, b and ¢ satisfy the equation 

(axb)+(bxe)+(exa) =0.



    

12.  Prove that the volume of the 

parallelepiped determined by 

the vectors a, b, ¢ is given by 

lae(bxc)l. 

a, 

© 

Find the volume of the parallelepiped determined by 

the vectors: 

a=2i+j+3k,b=i+4j—k ande = -2i+j+5k 

13y & Consider the triangle ABC where the points M, 

N and P lie on the sides [AB], [BC] and [CA] 

respectively and are such that AM = k, AB 
, BN =/kBC and CP = kyCA, where 

ky, ky. k3 € R Show thatifthe vectors CM, AN 
and BP form a triangle, then, k| = k, = k5. 

b Consider the triangle ABC where the points M, 

N and P lie on the sides [AB], [BC] and [CA] 

respectively and are such that AM = kAB, 

BN = kBC and CP = kCA ,and k€ R.Find 

the value of k so that the area of the triangle 

formed by the vectors CM, AN and BP is a 

minimum. 

Vector Equation of a Plane 

The approach to determine the vector equation of a plane 

requires only a small extension of the ideas of the previous 

sections. In fact, apart from introducing the form that the 

equation of a plane has, this section has its foundations in our 

most recent work. 

We begin with the vector equation of a plane. 

  

Let P(x, y, z), whose position vector is r = OP be any point 

on the plane relative to some origin O. 

Consider three points, A, B and C on this plane where OA = 

a, AB = b and AC = c. That is, the plane contains the vectors 

b and ¢, where b | 0 | ¢ and the vectors a, b and ¢ are non- 

coplanar, 

Now, as AP, b and c are coplanar, then we can express AP in 

terms of band ¢: AP = Ab + e for some real A and 1. 

Then, r = OP = OA+AP = a+Ab+pc. 

That is, every point on the plane has a position vector of this 

form. 

As such, we say that the vector equation of a plane is given by 

r=a+A\b+puc 

This means that to find the vector form of the equation of a 

plane we need to know: 

1. the position vector of a point A in the plane, and 

2. two non-parallel vectors in the plane. 

  

2 3 

Letb=|1|andc= [ 0 | be two vectors on the plane. 

1 =1 

1 

Then, as the point (1, 2,0) lies on the plane we leta = | 2 | be 

the position of this point. 0 

Using the vector form of the equation of a plane, 

1 2 3 

ie.r=a+Ab+pc,wehaver = |2 +A l}+p 0 |.- 

0 1 =1 
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Cartesian Equation of a Plane 

In the same way that we were able to produce a Cartesian 

equation for a line in 2-D, we now derive the Cartesian 

equation of a plane. 

Using Example C.11.37 we obtain the parametric equations 

and use them to derive the Cartesian equation of the plane. 
1 2 3 

From the vector equation r = [2} +A I]+ p[ 0 J we obtain 

0 1 ~1 

the following parametric equations: 

x=142N+3p-(1) 

z= A= pu-(3) 

Now we find expressions for X and p in terms of x, y and z, 

taking care to use all three equations while doing this: 

From (1) and (3) we obtain: A = %—l -(4) 

From (2) and (3) we obtain: t = y—z-2 - (5) 

Finally we substitute these back into one of the equations. In 

this particular case it will be easiest to use (4) and (2) - and 

in fact we didn’t need the expression for y, though in most 

cases we will. 

x+3z-1 
Substituting (4) into (2) we obtain: y = 2+ 5 

and simplifying we get: x—5y+3z = -9 . 

This result tells us that the: 

  

From the vector equation of the plane, namely: 
1 —2 1 

4 1 2 
we produce the parametric equations: 

x= 

y 

-2k +p - (1) 

Il 3+h+p -(2) 

Z= 4+h+20 - (3) 

Next, we eliminate A and t:(2) - (1): y—x = 2+ 3% - (4) 

2x(2)-3)  2y-z=2+% -(5) 

(4)-3x(5): —5y—x+3z=-4 

That is, the Cartesian equation of the plane is given by 

—Sy—-x+3z=-4orx+5y-3z=4, 

I Y P At PR s S A SRS A N 

Exercise C.11.12 

I Find the vector equation of the plane containing 

the vectors b and ¢ and passing through the point 

A. In each case, draw a rough diagram depicting the 

situation. 

ab=3i+2j+k,c=-2i-j+tk, A4=(1,0,1). 

bb=i-j+2k,c=—i-j+k, A=(-1,2,1). 

cb=2i+2j—k c=2i-j+3k,4=(4,1,5). 

db=-3i+j-2k, c= i—2j+%k,As(2,—3,~l). 

2. Find the Cartesian equation for each of the planes in 

Question 1. 

3. Find the: 

i vector equation. 

ii Cartesian equation of the plane containing the 

points: 

a A(2,3,4), B(-1,2,1) and C(0, 5, 6). 

b A(3,-1,5), B(1, 4, -6) and C(2, 3, 4).



4, A plane contains the vectors b = 2i—j—k and 

e =3i+j+2k. 

a Find the vector equation of the plane, containing 

the vectors b and ¢ and passing through the 

point: 

i (2,-<2,3). 

ii (0,0,0). 

b Find the Cartesian equation for each plane in 

parta. 

¢ Express bxc in the form ai + bj +ck. 

d What do you notice about the coefficient of x, 

yand z in part b and the values a, b and ¢ from 

part ¢? 

Normal Vector Form of a Plane 

Before we formally derive the normal vector form of a 

plane, we consider an example that follows directly from the 

work covered so far. In particular, Question 4 from Exercise 

C.11.12 - if you have not attempted this problem you should 

do so now, before proceeding further. 

Consider a plane containing the vectors b = 3i—j+ 2k 

and ¢ =2i+2j+k and passing through the point 

A(2, 1, 6). Now, the cross product bXc represents a 

vector that is perpendicular to the plane containing the 

vectors b and c. 

  

      

  

ijok 
Letn=bxc=|3_12|=|12|i- 32}/4 31k 

21 21 22 
221 

= —5i+ j+8k 

We now haveavector, n = — 5i+j+ 8k thatis perpendicular 

to the plane in question. 

  

3-d realisation - plane and perpendicular 

vector 

  

Next, consider any point P(x, y, z) on this plane. As P lies on 

the plane the vector AP must also be perpendicular to the 

vector n. This means that ne AP = 0. 

To use the equation ne AP = 0 we first need to find the 

vector AP. As AP = AO + OP, we have: 

AP — (i +j+ 6k) + (xi +yj + zk) 
= (x=2)i+ (y—1)j+(z=6)k 

Then, from ne AP = 0 we have 

(—5i+j+8k)e((x—2)i+(y—1)j+(z—6)k) =0 

& -5x-2)+(y-1)+8(z-6) =0 

&-5x+y+8z =39 

That is, we have obtained the Cartesian equation of the plane 

containing the vectors b = 3i—j+2k and ¢ = 2i+2j+k 

and passing through the point A(2, 1, 6) without making use 

of the parametric form of the plane. 

We check this result using the parametric form of the plane. 

2 3 2 

From the vector for, r = [1J+}\. l]fl,t[z] 

1 6 2 

we obtain the parametric equations: 

= Il 2#3A+20 ~(1) 

y=1-r+2p -(2) 

and  z=6+2tp  —(3) 

- @) xoy =14 - (9) 

@)-2x(3):  y-2z=-11-5k - (5) 

From (4) and (5) we obtain: 

x=y= :,\'—2:—%11 

-5 & -5S5x+y+8z = 39. 

As expected, we produce the same equation. 
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To use this method, we require a vector that is perpendicular 
to the plane and a point that lies on the plane. We could use 

the vector, n (say) or the unit vector n, or even -n, as they are 

all perpendicular to the plane. 

We can summarise this process as follows: 

To find the Cartesian equation of a plane through the point 

Py(xg ¥o. 2) having a non-zero normal vector n (or n) we 

i let P(x, y, z) be any point on the plane, and 

2 find the vector n = ai+bj+ck . 

Then, as PP L n for all points P on the plane, we have 

PyPen =0 

= [(x=xp)i+ (y—yoli+ (z—zy)k] e (ai+bj+ck) =0 

sa(x—xg) +b(y—yy) +elz—z5) = 0 

Or, after some simplifying, ax+by+cz = d 

  

Notice that if two planes, I, and II, have normal vectors, 

ny = aji+bj+eck and ny = ayi+ byj+ e k respectively, 
then the two planes, IT and IT, are: 

1. parallel iff their normal vectors are parallel, 

ie iffn =mxn, where meR 

_bh_«a a 

e iff L= _1="1=4 
a; by o 

2. perpendicular iff their normal vectors are 
perpendicular. i.e. iffn, e n,=0 
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ie.iffaa, +bb,+cc,=0 

Taking this one step further, this 

result also means that we can 

use the normals to find the angle 

between two planes. The angle 
between two planes is defined as 

the angle between their normals. 

  

If two planes, II, and II, have normal vectors 

ny = ajitbj+eck and ny = a,i+ byj+ c,k respectively, 

and intersect at an acute angle 6 (or T — 6 depending on their 

direction), the acute angle 6 can be found from the product 

rule: 

    

Using the normal vector, » = 3i—2j+4k and a vector on 

the plane passing through the point A(3, 1, 1), i.e. the vector 

AP = (x=3)i+(y—1)j+(z— 1)k , where P(x, y, 2) is an 

arbitrary point on the plane, we have 

neAP =0 

= 3i-2j+4k)e[(x=3)i+(y—-1)j+(z—-1)k] =0 

Thatis, 3(x-3)+(-2)(y—1)+4(z-1)=0 

Or, after some simplification, 3x -2y +4z =11 

  

The angle between the planes corresponds to the angle 

between their normals.



    

So, using the dot product we have 

(3i—2j+4k) e (i—j+3k) = [3i—2j+4k|[i—j+3k|cos® 

3+2+12 = JZ_E’xJficose 

s.cosB = A 
NEZET 

And so, we have that 6 = 17°52' = 18° (to the nearest degree). 

  

To find the angle between the planes we need the normal 

vectors to the planes. From our observations, we have that a 

normal vector can be directly obtained from the equation of a 

plane by using the coefficients of each variable. 

For the plane 2x + 3y — 8z = 9, a normal vector would be 

2i + 3j - 8k and for the plane —x + y - 2z = 1, a normal vector 

would be —i+j—2k . 

Then, we proceed as in Example 4.6.4, using the cosine rule: 

(2i+3j—8k)o(—i+j—2k)=|2i+3j— 8k||-i+j—2k|cos® 

=243+ 16 = J77x Jf6c0s® 
17 

scos) = ——— 
JTT % 6 

That is, 8 =37°44" = 38° (to the nearest degree). 

i T ot e e O R o (O TERe S| 

Exercise C.11.13 

— Find the Cartesian equation of the plane containing 

the point P and having a normal vector, n. 

a n=2i—-j+5k,P=(3,41) 

o
 = Il —4i+6j -8k, P=(-2.3,-1) 

c la| = 7,1b] = 3,P=(2.4,5) 

d  nm=5i+2j+k,P=(-1,2,1) 

Which of the planes in Question 1 pass through the 

origin? 

Find the Cartesian equation of the plane containing 

the points: 

a A(2,1,5),B(3,2,7) and C(0, 1, 2) 

b A(0,2,4), B(1,2,3) and C(4, 2, 5) 

c A(1,1,7), B(2, -1, 5) and C(-1, 3, 7) 

Find the angle (to the nearest degree) between the 

planes with normal vectors: 

a i—j+k and i—j+3k. 

b —3i+5-2k and j+k. 

c 4i-2j+7k and 2i+ 11+ 2k . 

d  —3i+2j—4k and 9i—6j+8k . 

Find the angle between the planes: 

all; : —x+3y—z=9and I, : 6x+2y+3z = 4 

bIl :2x+2y-3=zand I, : 2y-3z+2 =0 

¢ :2x—y+3z=2andM, : 2x+y-7z = 8 

Find the equation of the plane which passes through 

the point A(4, 2, 1) and: 

a contains the vector joining the points 

B(3,-2,4) and C(5, 0, 1). 

b is perpendicular to the planes with equations 

5x-2y+6z+1=0and 2x— y—z=4. 

Find the equation of the plane which passes through 

the point A(-1, 2, 1) and is parallel to the plane 

x-2y+3z4+2 = 0. 
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8. Find the equation of the plane which passes through 

the point A(-1, 2, 1) and is parallel to the plane 

2y—3 = 3x+5z. 

9. The planes 4x—y+6z = =5 and ax+by—z = 7 are 

perpendicular. If both planes contain the point 

(1, 3,-1), find g and b. 

10. a Find a vector equation of the line passing 

through the points (3, 2, 1) and (5, 7, 6). 

b Find the normal vector of the plane 

3x+2y+z=6. 

c Hence, find the inclination that the line 

x=3 _y-2_z-1 makes with the plane 
2 5 5 

3x+2y+2z=10. 

The Normal Form 

We now formalise (or at least give a complete vectorial 

presentation for) the equation of a plane in three dimensions. 

The good news is that the normal form of the vector equation 

ofaplane in three dimensions develops in almost the same way 

as the vector equation of a line in two and three dimensions. 

/ 

/ 

  

Let 1 be a (unit) vector from O normal to the plane and d be 

the distance of the plane from the origin. 

The condition for a point P to be on the plane is that OA is 

perpendicular to AP. 

Thatis, OA e AP = 0 

Now, AP = AO+OP = —dn+r 

Sothat dne(—dn+r) =0 
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Now, dividing by d (assumed to be non-zero) 

we have: ne (—dn+r) = 0 

0 

=ner=dnen 

s—dnen+ner 

sner=d(asnen =1) 

That is, the normal vector form of the equation of a plane is 

givenby ner = d. 

If we are using n (not a unit vector) the equation becomes 

ner =D, where D is no longer the distance of the plane 

from the origin. 

If we know the position vector a of a point on the plane we 

can write the equation as: 

1 

For example re |1 | = 8 is the equation of a plane. 

1 
We can get this into a Cartesian form by noting that r is the 

position vector of some arbitrary point P(x, y, z) on the plane 

and so we can write the vector expression as: 
1 

efl|=8,orx+y+z=8. 

1 

= 
] 

Converting from Cartesian to vector form: 

2 

2x-y+4z=2becomes re|-1| = 2. 

4 

If we want to get the equation in » form, i.e. in the form 

ner = d we can work out that the length of the vector 
2 

—1 | is §22+ (~1)2+42 = /21, and so, from the equation 

4 

2 

re|—1|= 2 wedivide both sides by .21 to get: 

4 

o 2 e el 2 a2 
V21 7 J21 /21 4 V21 

2 
The distance of the plane from the origin is —— . p g i



    

We need to prove that n is perpendicular to v. 

Rewriting x — 2y + 2z = 11 in the normal vector form, we 

have: 1 

re|-2| =11 

2 1 

From this equation, a suitable # is the vector | -2 |. 

2 

From the vector equation of the line, the direction vector of 

vis: 

—_
 
A
 

1 4 

As|-2|e|3|=4-6+2 = 0,thevectorsareperpendicular. 

2 1 

So the line and plane are parallel. 

  

From the vector equation of the line we obtain the parametric 

equations: 

x=2+5s 

y=1+s 

zZ=-=5 and 

If this line lies on the plane, then the parametric equations 

must satisfy the Cartesian equation of the plane. Substituting, 

into the equation x - 3y + 2z = -1, we get 

LHS=x-3y+2z = (2+5s)-3(1 +5)—2s 

2+55s-3-35—-2s 

—1 

= R.H.S - Therefore, the line lies in the plane. 

BRI el ey Lt o e ) o R TR e o 

Exercise C.11.14 

For this set of exercises, where appropriate, make use of the 

normal vector form to solve the questions. 

1. Convert these planes to Cartesian and vector form: 

1 2 -3 

a r=| 1 |+A 2 |+u| 0 

—4 3 -1 

2 2 0 

b r=| 1 |+A] 1 |[+4] 0 

1 0 1 

2% Given A(1, 1, 0), B(2, 1, 3) and C(1, 2, -1), find the 

Cartesian equation of the plane containing A, B and C. 

(Find a parametric form first by taking A as the point 

in the plane and AB and AC as the two vectors in the 

plane.) 

3. Re-solve Question 2 by taking the Cartesian form as 

X+ by +cz=d, then calculating b, cand d (simultaneous 

equations in three unknowns). 

4, Show that the line x+ 1 = % = 4%2 and the 

plane 5x +y+2z = 20 are parallel. 

5. Find the distance of each of these planes from the 

origin (i.e. find d): 

a 2x—=3y+6z = 21 

b 2x—y+2z=35 

c x+y=—3z = 11 

d 4x+2y-2=20 
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6. Find the equation of the plane through (1, 2, 3) parallel 

to3x+4y-5z=0. 

7. Find the equation of the plane through the three points 

(1,1,0), (1,2, 1) and (-2, 2, -1). 

8. Show that the four points (0, -1, 0), (2, 1, 1), (1, 1, 1) 

and (3, 3, 2) are coplanar. 

9. Find the equation of the plane through (2, -3, 1) 

normal to the line joining (3, 4, -1) and (2, -1, 5). 

Intersection of Two Lines 

In general, two lines (in three dimensions) will not intersect, 

but in certain circumstances they may. We can show, for 

example, that the lines: 

—1 3 4 2 

r=|4|+A-2|andr=|4 [+yu[-3 

0 1 -1 2 

do intersect, and we can find their point of intersection. 

We show that there exist values of A and p which make the x-, 

y-and z- coordinates of the two lines identical. If we compare 

the x- and y-coordinates we get: 

AP = Ab+ e 

We can solve these to get A = 3 and p = 2. The point that will 

decide whether the two lines intersect is: 

when A = 3 and p = 2, are the z-coordinates also equal? 

This can be tested: A = 3 and p = 2, [ has z-coordinate = 0 + 

A =3 and m has z-coordinate = -1 + 2p = 3. So the lines do 

intersect. 

Substituting A = 3 and p = 2 in the expressions for the x- 

and y-coordinates we find that the point of intersection is 

(8, =2, 3). If the z-coordinates had been different, we would 

deduce that the lines do not intersect. 

Recall that lines which do not intersect and are not parallel 

(a situation we looked at in section 4.4) are said to be skew. 
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Exercise 4.7.1 

l.a  Show that the lines r, =5i+j+k+/l(i+2j—2k) and 

r,=11i+4j—2k+pu(4i—j+k) intersect, and find 
their point of intersection. 

b By  considering the scalar  product 

(i+2j—2k)e (4i—j+ k), show that the lines 

from part a intersect at right angles. 

2. Given the lines: 

IR 
e 
o 

find the two lines that intersect. Find also the 

coordinates of the point of intersection and the 

acute angle between the two lines. 

3 Show that the line joining (1, 4, 3) to (7, -5, -6) 

intersects the line 

    

and find the point of intersection. (Find a parametric 

form for each line - remember to use a different 

parameter for each line.) 

4. Show that the three lines: 

x=1     L:X:}"+4:§+|M: = 2+ 1 =z=5 

) N2 =] =222 
4‘ 3 

=
 

intersect at a single point, and give its coordinates. 

Intersection of a Line and a 

Plane 
We have considered the case of a line and a plane being 

parallel, and the case of a line lying in a plane. If neither of 

these happens then the line and plane must intersect in a 

point.



  

The angle between a line and a plane is defined as the angle 

between the line and its projection on the plane. To find the 
angle between a line and a plane we look at the vectors n 

(perpendicular to the plane) and v (in the direction of the 

line): 

Alternatively we can use the fact that cos¢p = sin® to write 

directly sin@ = ¥ 
¥ B 

We can find angle ¢ from the formula 

subtract from 90° to find 6. 

  

  

  

Introducing a parameter A, we have the parametric equations: 

x=2\,y=2\-6and z = 7%1 

Substituting each of these values into the equation of the 

plane 3x+y—z = 9 we obtain: 

6/1+(2A—6)—%fl=9 

lie: 18\ +6A-18-(A+1)=27 

sA=2 

Substituting A = 2, we get x =4, y= -2 and z = 1, i.e. the point 

of intersection is (4, -2, 1). 

Writing the equation of the planeas re[ 1 |=9 

0 2 

and the equation of the lineas r=| —© |+4| 2 |, 

B\ h 3 3 

3 2 

2 we have that n=| 1 and v= 

-1 v 

[1 
Then v-n=6+2—§=7§,|v|= 85 and [n|=+/11. 

— 

Hence cos$ = 0.81165.... , ¢ = 35.7° and finally 6 = 54.3°. 

  

T e TSR 
Exercise C.11.15 

1. In each case find: 

i the point of intersection of the line and plane, 

and 

i the angle between the line and plane: 

line plane 

a i+2j+A3itjt+k) re(2i+4j—k) = 28 

-1 3-z b sy f 2x+3p+z =11 
2 YT, ) 

3 ~1 4 0 2D 

c 4|+x| 3 [l}+k[l}+u[l] 

2 3 0 1 2 

4 &-1_p-2_z+3 peitos 3 3 3 2x+4y-z—-1=0 

2. 

a A line joins the origin to (6, 10, 8). Find the 

coordinates of the point where the line cuts the 

plane 2x+2y+z = 10. 

b Find the point where the line joining (2, 1, 3) to 

(4, -2, 5) cuts the plane 2x +y—z = 3. 

Try to describe with words and/or diagrams: 

a the plane x+y = 6. 

b theline x = 4,y = 2z. 

Now find their point of intersection. 

4. Find the distance of the point (-1, -5, -10) from the 

point of intersection of the line: 

—= =+-——— = —=and theplanex—y+z = 5. 
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Intersection of Two Planes 

A full treatment of solving simultaneous equations in three 

unknowns is provided in Chapter A.9. We revisit this area 

using the development of 3-D geometry that has evolved over 

this chapter. 

If two planes are parallel they will clearly not intersect (unless 

they coincide), and this case will be identifiable because their 

respective n vectors will be parallel. For example the planes 

2x -y -z=3and —4x+2y+2z = 7 are parallel because 

their respective n vectors are 2i — j — kand —4i + 2j + 2k and 

— 4i + 2j + 2k = -2(2i - j - k). If two planes are not parallel 

they must intersect in a line. 

  

Our strategy is to eliminate z and hence write x in terms of y. 

Adding (1) and (2): 3x+2y = 6 andso x = %X 

Now we eliminate y and write x in terms of z. 

Adding (1) to 3 x(2): 7x -2z = 8 and so x:227+8_ 
  

Putting these together into a single equation we have the line 

6—2 e Y _ 2z+8 

3 7 
  

Note: having found the line it is worth choosing a simple- 

valued point on the line, such as (2, 0, 3), and checking that it 

lies on both planes — which in this case it does. 

To find the angle between the planes we find the angle 

between their normal vectors. 

Rewriting the equations as r'(i+3j+k)=5 and 

rO(Zifj—k)zl we can calculate: 

(i+3j+k)e Qi—j—k) = -2 
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|i+3j+k=+11 

l2i-j-k)| = J6 

=2 
Hence cos@=—— and 6 = 104.3°. 

J66 

If the acute angle was required it would be (180° - 104.3°) = 

75.7°. 

Exercise C.11.16 

1. Where possible, find a Cartesian equation of the line 

of intersection of the two planes and find the acute 

angle between them: 

a xty+z=3 and2x+y+3z=0 

b 2x+y+4z =7 and—x+3y+z = -8 

4 1 =1 
e r=|2|*tp| 2 |*q| 1 |and 

1 0 3 

0 2 

r=1 2 |tA 5 |tH 1 
0 3 -3 

d re(3i+2j+k)=10and re (i-4j-2k) = 8 

Show that the point (5, 2, -1) lies on the line of 

intersection of the planes x—3y+z = -2 and 

2x+y+3z =09, 

b Show that the line of intersection of the planes 

X+y+z=2and2x-y+3z=-4isperpendicular 

tox=y=z 

c Show that the equation of the line of 

intersection of the planes 4x+4y-5z = 12 

and 8x+12y—13z = 32 can be written as 

=1 _yp=2 _z.
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3. Find the angle between the lines defined by the 

intersection of the planes: 

x=-2y+z=20 x+2p+z =10 
- and s 

x+y-z=0 8x+12y+5z =10   

Intersection of Three Planes 

Case 1 
When we write the equations of three planes such as: 

X+y+2z=0 (1) 

2x-y+z=-6 (2) 

xX+y+3z=2 (3) 

and consider their possible intersection, we are solving a 

system of equations in three unknowns. There are three 

possible outcomes: 

1. a single solution 

2 no solution 

3. an infinity of solutions. 

Before reading on it is worth playing with three planes 

(books, pieces of card) and trying to get a clear picture of the 

geometrical interpretation of each of these possibilities. 

If M is the underlying 3 x 3 matrix of the system, in our case 

11 2 & 0 
2 -1 1 7 = -6 
3 4 -1 | 2 -6 | 

det M # 0 leads to outcome (i) and det M = 0 leads either to 

(ii) or to (iii). 

detM =1(=1x-1-4x1) - 1(2x-1 - 3x1) + 2(2x 4 - 3x-1) 

=24 

which means a unique solution, ie. a single point of 

intersection. 

To find this point we could eliminate z from (1) and (3), then 

from (2) and (3): 

=12 (1) +2(3) Tx+9y 

Il | %)
 

5x+3y (2)+3) 

  

and then solve. We get x = -3 and y = 1, and by going back to 

(1) we find z = 1. Hence the point of intersection is (-3, 1, 1). 

(There is considerable freedom as to which variable to 

eliminate and how to set about eliminating it.) 

Case 2 

Now we look at a case where det M = 0 but there is 

no solution - ie. the planes have no common point. 

Such a system is: 

3x+y+4z =8 (1) 

Ix-y-z=4 (2) 

x+y+3z=2 (3) 

We set off in the same way as in Case (1): by eliminating one 

of the variables in two different ways. For this system the 

obvious variable to eliminate is y: 

(1) +(2) 6x+3z=12 

2)+(3) 4x+2z =6 

The first equation is equivalent to 2x +z = 4 and the second 

is equivalent to 2x +z = 3. The equations are inconsistent 

with each other and there is no solution to the system. The 

three dimensional picture is of three planes that have no 

point of intersection. 

Case 3 

In this system check that det M = 0: 

3x-y-z=1 (1) 

X+2y+z=4 (2) 

x-5y-3z=-7 (3) 

We could eliminate x in two ways: 

3x(2)-(1) 7y+4z=11 

(2)-3) Ty +4z=11. 

It is important to be clear what this means: if we choose any 

y and z satisfying 7y + 4z = 11 we can find the value of x such 

that all three equations (1, 2 and 3) are satisfied. An example 

would be y = z = 1, leading to x = 1; check that all three 

equations are satisfied. But if we chose to satisfy 7y + 4z = 11 

with y = 5, z= -6 we get x = 0, and again all three equations 

are satisfied. 

Clearly we could find as many solutions as we wanted. 
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  Solution is (u i ;41, X) . 

To summarise: if det M = 0 there are two possibilities. 

a When we eliminate one of the variables in two 

different ways and we get two inconsistent equations 

in the other two variables, then we have no solution. 

The three dimensional picture of this is three planes 

that fail to intersect. 

b When we eliminate one of the variables in two different 

ways and we get two identical equations in the other 

two variables, then we have an infinity of solutions. 

The three dimensional picture of this is three planes 

intersecting in a line. (To find the equation of the line, 

find the equation of the line of intersection of any two 

of the planes.) 

Exercise C.11.17 

1. Three planes can fail to have any point of intersection 

if two or more of them are parallel. 

Describe a situation where three planes fail to intersect 

but no pair of planes is parallel. 

2. Analyse Case 2 in a little more detail: 

a Find a Cartesian equation of the line 

of intersection of |u =05y =12 and 

3x—y-z =4. 

b Show that this line is parallel to x +y +3z = 2. 

3. Analyse Case 3 in a little more detail: 

a Find a Cartesian equation of the line of 

intersection of 3x-y-z=1 - (1) and 

x+2y+z =4 -(2). 

b Show that this line lies in the plane 

x—5y—-3z=-7 -(3). 

c Show that (1) =2 x(2) + (3). 

4. Classify each set of planes as: 

i intersecting in a single point, in which case give 

its coordinates, or 
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ii no point of intersection, or 

iii intersecting in a line, in which case give a 

Cartesian equation. 
x+y-=z =10 

a 2x—3y+z =95 

x-4y+2z =6 

—-x+3y+4z = 14 

x+2y-2z=10 

c 3x-y+z=11 

2 +y + 4z = -1 

2x+y+3z = =5 

d x—2y+2z = -9 

3x+4y+dz = -1 

This question involves concepts from the whole of this 

chapter. 

OBCDEFGH is a cuboid with O(0, 0, 0); B(0, 0, 

C(4, 0, 3); D(4, 0, 0); E(4, 2, 0); F(0, 2, 0); G(0, 2 
H(4,2,3). 

a Sketch the cuboid. 

b Find parametric forms for the equations of lines 

OH and BE. Show that the two lines intersect at 

the point (2, 1, 1.5). 

c Find the Cartesian equation of plane FHD. (A 

parametric formis r = OF +sFH + /FD . Now 

convert to Cartesian form.) 

d Find the coordinates of the point of intersection 

of line BE and plane FHD, and also the angle 

between the line and plane. 

e Find the angle between plane FHD and plane 

GHCB. 
x+y-—z=-1 

Show that the equations:5x +3y +z = 3 

2xty+z=a 
are inconsistent for @ = 1 and describe this situation 

geometrically in terms of intersecting planes. 

Find the value of k for which the system of equations: 

8x +3y+z=12 

x+2z=3 

x+y-z=k



B — - 

10. 

represents three planes that intersect in a common line 

and find the vector equation in parametric form of the 

line of intersection. 

The planes x-3y—-z=0 and 3x-5y-z=0 

intersect in a line, L, that passes through the origin. 

a Find the vector product of the normals to both 

planes. 

b Hence, find the vector equation of L. 

c Find the value of k for which the system of 

equations: x—3y—z=10 

3x-5y-z=0 

—x+hky+2z = k2 -4 

has: 

i no real solutions. 

ii infinitely many solutions. 

iii a unique solution. 

a On a set of axes, sketch the planes x + y = 2a, 

y+z=2bz+x=2c 

b Find where the planes meet, i.e. solve the system 

of equations: x + y = 24 

y+z=2b 

z+x =2 

c Hence, deduce the solution to the system: 

2 
Xty = 2-y+z =Z,ztx = 2 

. a ’ b c 

a Find the two values of k for which the planes with 

equations —x+y+2z =3, kxty-z =3k 

and x + 3y + kz = 13 have no unique solution. 

b Show that for one value of k, there are in fact no 

solutions. 

c Show that for the other value of k, the planes 

meet along a line. Find the Cartesian equation 

of this line. 

11.  Show that the equation for the plane passing through 
the point M(x(, vy, zy) and perpendicular to the planes 
apx+byy+eiz =dp and ayx+byy+cyz = d, can 
be written in the form: r ) ] 

X—XoY—YgZ—2g 

a b, [ =0 

@ b, ¢y 

12.  Show that the equation for the plane passing through 

the points M(x, v, 29) , N(x,, ¥, z,) and perpendicular 

to the plane ax +by+cz = d can be written in the 

form: 

X=Xy Y=Yy Z—Z 

X{—Xg¥1—Yp21-% | =0. 

a b e 

13.  Show that the equation for the plane passing through 

the point M(x(,v.z,) and parallel to the straight 

lines: 
a, A a, 1 

Ler = |by|+Amy|andL;r = by |+ m, 

[ ny 2, ny 

X=X V=N 2% 

may be written in the form| /4 7 

Z m, 7, 

14.  Show that the equation for the plane which contains 

the lines 

“ / y ! 

Lyge po= by|+Alm and Ly:r = |by |+t m 

| n c, n 

may be written in the form 

x=ay y=by z—¢j 

ay—a; by—by cy—c| | =0. 

/ m n 

Answers 
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There are two types of stack: 

   
Applications Ase 

3rd layer directly above 

the hollows oin the 1st layer ABC 

Crystals 

The beautifully regular shapes of crystals arise naturally when 

molten minerals solidify or when solutions are concentrated 

by evaporation. 

  

ABAB 

3rd layer directly above 

the hollows @ in the 2nd layer ABA 

What two crystal forms result from these two arrangements? 

  

The regular shapes occur when the atoms (ions, molecules) 

'close-pack’ to form arrangements like a stack of tennis balls 

in a sports shop. 

The techniques discussed in this section should enable you to 

investigate the shapes that arise when identical spheres form 

such crystals. 
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Bayes' Theorem 

Law of total probability 

sing the Venn diagram, € 

for any event A, we have [ g B’ 
  

that 

A=A4Ane=An(BUB’) 

      = (ANnB)U(ANB’) 

As these two events are mutually exclusive, we have: 

P(4) = P(ANB)+P(ANB’) 

However, 

P(4|B) = ZAOB) b4 ~B) — P(B)x P(4]B) and 
P(B) 

" P(AnB) 5 7 ; p = 2\ A ) D (4 = ; ) P8 = PEOE) P B) = P(B) x P(A|B) 

which leads to the Law of Total Probability. 

  

Although this expression 

may look daunting, in 

fact, it represents the 

result that we would 

obtain if a tree diagram 

was used. 

AB — > ANB 
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Example D.7.1 

A box contains 3 black cubes and 7 white cubes. A cube 

is drawn from the box. Its colour is noted and a cube 

of the other colour is then added to the box. A second 

cube is then drawn. What is the probability that the 
second cube selected is black? 

  

We begin by setting up a tree diagram, where B; denotes 

the event “A Black cube is observed on ith selection” and W, 

denotes the event “A White cube is observed on ith selection”. 

  

32‘ Wi—=B,n ", 

  

A black cube could have been observed on the second 

selection if: 

i the first cube selected was white (i.e. B,|W, ), or 

  

ii the first cube selected was black (i.e. /33\/)’1 ) 

Therefore, P(B,) = P(B, W) +P(B, N B|) 

T 4 3 2 

1070 10770 
17 
50



Bayes’ Theorem for two events 

As we saw earlier, conditional 
probability provides a means 

by which we can adjust the 
probability of an event in 

light of new information. 
Bayes' Theorem, developed 

by Rev. Thomas Bayes, 

pictured, (1702-1761), does 

the same thing, except this &3 

time it provides a means of 

adjusting a set of associated 

probabilities in the light of 
new information. 

For two events, we have: 

    

Next: P(Both White given both are the same colour) 

=P(WyN Wl‘(Wszl)u(Bzr\B])) 

P((Wy,n W) (W W)U (B, N BY))) 

P((Wy W)U (B, B))) 

P(W, O\ W)) 
P(Wy ,) + P(B, " BY) 

POV, | W) X POF)) 

POW,[W)POW,) + P(B,| B )P(B)) 

X 

[2
)3
]=
 

3 
10 sl

=|
sl
e 

= X 
1 

0
1
~
 

— >
 

  

Again, the formula may seem daunting, however, it is only 

making use of a tree diagram. 

  

Following on from the previous example, we have the same 

tree diagram: 

BZ|W1—> BynW, 

Wy W) == Wy W, 

3:\31 — B,N B 

  

Wo|B, == Wy B, 

We require: P(Both white given that both are of the same 

colour) 

Now, the probability that they are of the same colour is given 

by the probability that they are both white or both black, i.e. 

P((Wyn W)V (ByNB))- 

  

Let the event A denote the event HlA 

'driver wears a seatbelt' and B 

denote the event 'Driver speeds’. 
BlA 

Using a tree diagram we have: ‘ 

  

We need to find, P(Driver was 

wearing a seatbelt | driver was booked for speeding): 

P(4NB) 
P(B) 

P(4) X P(B,A) 
P(A) < P(B|A) + P(4") X P(B|A") 

0.9%02 _ 18 
T 09x02+0.1x06 24 

= P(4|B) = 

So, P(that a driver who was booked for speeding was in fact 

wearing a seatbelt) = 0.75 
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   Bayes' Theorem for three events 

So far we have used Bayes’ Theorem for the case when the 

sample space is partitioned in two events, A and A’, where 

AUA’ = U. However, this can be easily extended to the 

situation when the sample may be partitioned into many 

events. That is, 4, U4, U 43U ... U4, = U where each of 
the events 4; are mutually exclusive. 

So, let’s consider the case when there are 3 events, so that the 

event A can be partitioned into three exhaustive, mutually 

exclusive subsets, i.e. B = (BN A ) U (BNAy) U (BNA;). 

     BnA, : 

BnA, 

BnAy 

P(B) = P((BNA)) v (BNndy)u(BnNAy)) 

=P(BNA))+P(BNA4,y)+P(BNA;) 

_ P(Bn4)) 5 +P(BfiA2) Pl Y 
,Wx (4)) WX (Ay) e 

P(B M 43) 
WXP(A3) 

=P (B|4,)xP(4,)+P(B|4) X P(4,)+ P(BlA3) X P(4s3) 
Therefore, we have that: 

P(4,|B)= 
P4, 0 B) 

P(B) 
P(B|A|)XP(4)) 

:P(B|AI)><P(A])+ P(B|A4) % P(45) + P(B|43) X P(43) 
  

As daunting as this expression may appear, all that we have 

done is add a new branch to our existing tree diagram. 

Everything remains the same. Making use of a tree diagram 

to help us evaluate the required probabilities is always useful. 

Such a diagram would have the following structure: 

BlA,—> 4, "B ... P(B|4,)xP(4)) 

   

  

_B|Ay—> A, B...P(Bl4;,)xP(4,) 

BlAy—>A; A\ B .P(B|43)XP(4;) 
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Using the notation just discussed, we let 4, denote the event 

'Patient has disease in serious form', 4, denote the event 

‘Patient has disease in mild form' and 4; denote the event 

'Patient does not have the disease'. Let B denote the event 

'Records positive blood test'. 

This gives,P(4;) = 0.02, P(4,) = 0.05 and P(4;) = 0.93 

P(B|4,) = 0.92, P(B|4,) = 0.60, P(B|43) = 0.10 

Then, as: 
P(B)=P(B|4,) x P(4,) + P(B|4,) X P(4,) + P(B|A3) X P(43) 

=0.92x0.02+ 0.6 x 0.05+0.10 x 0.93 

  

=0.1414 

Using Bayes’ Theorem, we have: 

P(4, " B) 
P4y [B) = = 

P(B) 
_ P(B|4,)P(4,) 

P(B|A}) % P(4)) + P(B|4,) X P(4,) + P(B|A3) X P(453) 

_ 0.92x0.02 

0.1414 

= 0.1301 

T N R A T MOt I e - e e, 

Of course, we could have drawn a tree diagram to help with 

the example above: 

As in the case for two events, drawing a tree diagram works 

very well. However, one needs to make sure to allocate the 

correct probabilities to the appropriate branches. 

Next we consider a problem with three consecutive events 

producing three levels of branches, each identifying two 

possible outcomes.



        

P(D|R) 
_ P(DNR) 

P(R) 
o 0.08 x 0.90 x 0.40 

0.08 % 0.90 x 0.40 + 0.92 % 0.30 x 0.40 

=0.2069 

Again, notice how a tree diagram was most helpful in 

producing a neat and compact solution. 

Exercise D.7.1 

2. 

Let ‘D’ denote the event that a person has the disease, ‘P’ 

denote the event that a person will produce a positive reading 

and ‘R’ the event that the person develops a rash. 

From the given information, we can produce the following 

tree diagram (leaving out irrelevant information): 

3: 

  

Machine A produces 40% of the daily output of a 

factory but 3% of the items manufactured from this 

machine are defective. Machine B produces 60% of the 

daily output of the same factory but 5% of the items 

manufactured from this machine are defective. 

a An item is selected at random. Find the 

probability that it is defective. 

b An item is selected and is found to be defective. 

Find the probability that it came from machine 

B. 

At the Heights International School, it is found that 

12% of the male students and 7% of the female students 
are taller than 1.8 m. Sixty per cent of the school is 

made up of female students. 

a A student selected at random is found to be 

taller than 1.8m. What is the probability that 

the student is a female? 

b A second student selected at random is found 

to be shorter than 1.8m. What is the probability 

that the student is a male? 

A box contains 4 black cubes and 6 white cubes. A 

cube is drawn from the box. Its colour is noted and 

a cube of the other colour is then added to the box. A 

second cube is then drawn. 

a If both cubes are of the same colour, what is the 

probability that both cubes were in fact white? 

b The first cube is replaced before the second cube 

is added to the box. What is the probability that 

both cubes were white given that both cubes 

were of the same colour? 
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An urn, labelled A, contains 8 cards numbered 1 

through 8 whilst a second urn, labelled B, contains five 

cards numbered 1 through five. An urn is selected at 

random and from that urn a card is selected. Find the 

probability that the card came from urn A given that it 

is an even numbered card. 

An event A can occur only if one of the mutually 

exclusive events By, B, or B3 occurs. Show that 

P(4) = 
P(B,)x P(A|B}) + P(B,) x P(4|B,) + P(B3) X P(4|B3) 

Of the daily output, machines A and B produce items 

of which 2% are defective, whilst machine C produces 

items of which 4% are defective. Machines B and C 

produce the same number of items, whilst machine A 

produces twice as many items as machine B. 

i An item is selected at random. Find the 

probability that it is defective. 

ii An item is selected and is found to be defective. 

Find the probability that it came from machine 

B. 

A box contains N coins, of which m are fair coins 

whilst the rest are double-headed coins. 

a A coin is selected at random and tossed. 

i What is the probability of observing a head? 

ii Given that a head was observed, what is the 

probability that a double-headed coin was 

selected? 

b This time, a coin is selected at random and 

tossed n times. What is the probability that it is 

a fair coin, if it shows up heads on all  tosses? 

A population of mice is made up of 75% that are 

classified as ‘M+, of which, 30% have a condition 

classified as ‘N-. Otherwise, all other mice have 

the ‘N-" condition. A mouse selected at random is 

classified as having the ‘N-" condition. What is the 

probability that the mouse comes from the M+ 

classification group? 

Extra questions 

Answers 

  

A survey of the adults in a town shows that 8% have 

liver problems. Of these, it is also found that 30% 

are heavy drinkers, 60% are social drinkers and 10% 

are non-drinkers. Of those that did not suffer from 

liver problems, 5% are heavy drinkers, 65% are social 

drinkers and 30% do not drink at all. 

a An adult is selected at random. What is the 

probability that this person is a heavy drinker? 

b If a person is found to be a heavy drinker, what 

is the probability that this person has liver 

problems? 

c If a person is found to have liver problems, what 

is the probability that this person is a heavy 

drinker? 

d If a person is found to be a non-drinker, what 

is the probability that this person has liver 

problems? 

The probability that a person has a deadly virus is 5 

in one thousand. A test will correctly diagnose this 

disease 95% of the time and incorrectly on 20% of 

occasions. 

a Find the probability of this test giving a correct 

diagnosis. 

b Given that the test diagnoses the patient as 

having the disease, what is the probability that 

the patient does not have the disease? 

c Given that the test diagnoses the patient as not 

having the disease, what is the probability that 

the patient does have the disease? 

 



  

e have already encountered the idea of a probability 

distribution - the binomial distribution, the normal 

distribution etc. Also, we have noted that there are two main 

types of distribution: those that deal with discrete data and 

those that use continuous data. 

In this chapter, we will look at distributions that do not fall 

within these major classifications. 

Discrete Distributions 

We can describe a discrete random variable by making use 

of its probability distribution. That is, by showing the values 

of the random variable and the probabilities associated with 

each of its values. 

A probability distribution can be displayed in any one of the 

following formats: 

1. Tabular form 

2. Graphical representation(With the probability value 

on the vertical axis, and the values of the random 

variable on the horizontal axis.) 

3 Function (A formula that can be used to determine the 

probability values.) 

Example D.8.1 

Use each of the probability distribution representations 

discussed to display the results of the experiment where a 

coin is tossed three times in succession. 

  

URTHER FROBABILITY STRIBUTIO 

Let the random variable X denote the number of heads 

observed in three tosses of a coin. 

  

  

        
  

i Tabular form: 

0 1 2 3 

1 3 3 1 
8 8 8 8 

2. Graphical representation 

3 
= ° ® 

= i 
b 

=1 
8 

3 Function 

3 3! 
where | 7 |[=———— 

¥ (3—x)lx! 
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CHAPTER D8 

Properties of the Probability Function 

The features of any discrete probability function as follows: 

1. The probability for any value of X must always lie 

between 0 and 1 (inclusive). 

That is, 0<P(X' =x,)<1 for all values of . 

2. For the n mutually exclusive and exhaustive events, 

A, A,,...A, that make up the sample space, the sum of 

the corresponding probabilities must be 1. 

That is: 

Where P(X: x,) is the probability of event A, occurring. 

Any function that does not obey these two rules cannot be a 

probability function. 

Example D.8.2 

Consider the random variable X with probability function 

defined by: 

P(X =0)=24,P(X =1)=3% ,and P(X =2)=5k 

Determine the value of k. 

  

Because we are given that this is a probability function, then 

summing all the probabilities must give a result of 1. 

Therefore we have that: 

P(X=0)+P(X =1)+P(X=2)=1 

2k+3k+5k=1 

104=1 

A=01 
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Example D.8.3 

The probability distribution of the random variable X is 
represented by the function: 

P(sz)z—lt;,x:l,ld 
X 

Find: 

ak b P(2<X<3) 

  

a 

b 

Using the fact that the sum of all the probabilities must 

be 1, we have: 

P(X =1)+P(X =2)+P(X =3)=1 

k kK Zil42a 
14 9 

ok _ 
36 

=36 
49 

P(2< X <£3)=P(X =2)+P(X =3) 

kK 
=—+4— 
49 

_13 
T 36 

1B 
T 49 

Example D.8.4 

A discrete random variable X has a probability distribution 

defined by the function: 
x 4 

P(X = x)=[ < J(lj (3) ,¥=0,1,2,3,4 
x NSN3 

a Display this distribution using: 

i atable form i a graphical form. 

b Find: 

i BEX=2) i PASX<3). 

 



  

ai  We begin by evaluating the probability for each value 
of x: 

0 4-0 
2 

P(X=0)= [—) =12 
3 81 81 

‘[z)"" 1.8 32 
—| =4X=—X—=— 
3 3727 81 

1(2)“ 1 4 24 
= =6X—X—=— 
3 979 81 

3(2)“” 1.2 8 
=| =4X—=X—=— 
3 2773 81 
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P(X=4):[ 

‘We can now set up this information in a table: 
  

0 1 2 3 4 

16 32 24 8 1 

81 81 81 81 81 

              

il Using the table found in part i, we can construct the 

following graph: 

  

bi  From the probability table, we have that: 

24 
P(X=2)= o 

ii The statement P(1< X <3) requires that we find the 
probability of the random variable X taking on the 

values 1, 2 or 3. This amounts to evaluating the sum of 

the corresponding probabilities. 

P(1S X <3)=P(X=1)+P(X =2)+P(X =3) 

32 24 8 
e e 
81 81 81 

_64 
81 

URTHER ROBABILITY STRIBUTIONS 

  

It is also important to be able to take a physical situation and 
be able to construct an appropriate probability distribution. 

  

A tree diagram should help track the sample space for each 

draw: 

2 B ;gg 3red &0 green 

% G\ ;%8 2red &1 green 

% 5 B~ ;%8 2red &1 green 

  

a2 72 
s T~ 750 1 red &2 green 

R~ 120 EE %/ 7202red&19reen 

6 Vu<2 72 S 8 e 9 T~ 755 1 red &2 green 

3 72 3 QR/mlred&Zgreen 
Cx< 8 

. 2 
& 8G\7L240—0red£§:39reen 

Defining X as the number of red balls in the sample, we have: 

24 _ 1 
P(X=0)= 

720 30 

p(le)zfi E E—i 

720 720 720 10 

120 120 120 1 
P(X=2)=—+—+—= 

720 720 720 2 

12 =)= 12_L 
720 6 

Note that the probabilities add to 1. 
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The probabilities of each score are proportional to the areas 

of the sectors. The inner ring has half the diameter of the 

outer and so has one quarter of the area. Recall that areas are 

proportional to the square of linear dimensions. 

Thus, the probability of a dart scoring 3 points is % and the 

probability of scoring 1 point is %. 

P(2 inners, 6 points) = (%)*.= /6. 

P(an inner, then an outer, 4 points) = % x %.= */1s. 

P(an outer, then an inner, 4 points) = % x %.= /5. 

P(2 inners, 2 points) = (%)* .= */1s. 

Thus the distribution is: 

P(X=2)="/s 

P(X=4)=" 16+ 16="16="1s 

P(X=6)="/is 

188   

Exercise D.8.1 

1 P(X = x)=£,x= 1,2,3,4 isa probability distribution. 
X 

Find: 

a k. 

b P(X=2). 

c P(1<X<3). 

2. P(X=x),x=1,2,3,4 is a probability distribution 
such that: 

P(X =1)=P(X =2)=2xP(X=3)=2xP(X=3) 

Find P(X =3). 

3. Two fair six sided dice are rolled and the numbers 

uppermost are added. If X is the random variable 

defined by this total: 

a Tabulate the probability distribution of X. 

b Find P(X > 10) 

4. The probability that a jet engine will fail during a flight 
is 1in 60 000. A four engined jet can fly safely with two 

functioning engines. What is the probability of a crash 

resulting from engine failure? 

5. A probability distribution is defined by: 

P(X=x)= £|,A'=O,1.2,3 . Find: 
X% 

a k. 

b P(X =2). 

6. A box contains 5 balls labelled 2', 3 balls labelled '3' 

and 2 balls labelled '4'. A ball is drawn at random, the 

number is noted and the ball is replaced. A second ball 

is drawn and its number is added to the first.



10. 

11, 

   
a List the possible total scores. 

b Tabulate the probability distribution of these 

scores. 

A probability distribution is defined by: 

Lz,x:o,l,z,s 
(x+1) 

Find the value of k. 

P(X=x)= 

The number of meteorites observed during a 24-hour 

period is given by the random variable X, having a 

probability distribution: 

x 
2 

P(X=x)="—-¢7,x=0,1,2,3... 
x! 

Find the probability that more than 3 meteorites are 

observed in a 24-hour period. 

Prove that if 0< p<1, then: 

x 

P(X:x):[ “ ]p"(l—p)"_'r,x=0,1,2,3..‘,n 

defines a probability distribution. 

Prove thatif 0< p <1, then: 

P(X=x)=p"'(1- p),r=123.. 

defines a probability distribution. 

X is a the random variable defined as the number of 

rolls of two fair six sided dice before a 2 and a 1 is 

rolled for the first time. 

a Define the distribution of X. 

b Find P(X > 2). 

URTHERFPROBABILITY LUSTRIBUTIONS 

  

Continuous Random Variables 

The concept of a continuous variable was introduced in 

Chapter D6 of the SL book when we met the idea that 

probability can be measured by finding the area under a curve 

— the normal curve. In this section, we will look at examples 

in which these areas are found by integration. Some of the 

examples may best be tackled after studying the remaining 

chapters on calculus. 

A continuous probability density function (or continuous 

probability distribution), f(x), is a function satisfying the 
following properties: 

/B The variable is continuous and can assume all real- 

valued numbers. 

2. The function is non-negative, i.e. f{x) > 0. 

3. The total area contained between the graph and the 

horizontal axis is 1. 

Often we have that the probability density function is defined 

over some interval, a < x < b, so that f{x) > 0 fora < x < band 
flx) = 0 elsewhere. This means that is rewritten as: 

[ rwae=[" rloyae+] f(x)de+] fe)ae 

=" odtr+ j” S(x)dde+["0dx 

=[ f(a)ar 

  

It is generally a good idea to look 

at these problems graphically. 

In the present case, the graph 

is shown. There is a restricted 

domain. Outside the domain 

0 < x < 2, the graph runs along 

the x-axis. 
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If the function is to be a continuous probability density 

function, then the shaded area must be 1. 

So, we have: j 
0 
k(2x—27) =1 

" 2xl_x_"l: 
2 Sy 
  

We are now able to move on to finding probabilities defined 

by probability density functions. 

Example D.8.8 

The continuous random variable X has a probability 
density function defined by: 

f(x)={ H2-x) 0sx<2 
0 otherwise 

a Find k. 

b Find the probability that: 

i 05<X=<1 i X>1/X>05 

  

a As f(x) is a pdf, then: 

[h(2-xy ar=1 
2 

/c[—é(z—x)"};:l 

o) 
k 

1 

3 

8 

3 3 
bi P(()55X<1):J":;(2Ax)'dx 

L] 
19 

64 
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P(X >1)NP(X >05) 

P(X >05) 

P(X>1) 

P(X >05) 

ii P(X >1|X >05)= 

-2 
T 64 

1 

P(X >1X >05)=55- -2 
Vs 7 

Example D.8.9 

The time (t minutes) that Lennie finds that he has to wait 

in the supermarket queue before being served is modelled 

by the function: 

F)= 003(5+47—£*)  0<r<5 
0 otherwise 

a Sketch the graph of the probability density function. 

b Find the probability that Lennie will have to wait 

between 1 and 3 minutes for service. 

  

a The graph is an inverted parabola. Note again that the 

domain is defined as the interval [0,5] and that the 

function is zero elsewhere.



    

i 

b The required probability is a definite integral. As with 

other continuous variables, the probability that Lennie 

will have to wait exactly 3 minutes is zero. It only 

makes sense to calculate the probability that he will 

have to wait between two times or less than a given 

time or more than a given time. 

P(1<7'<3)= [ 003(5+ 47— 1*)ar 
s 

, =003| 57427 —— 
3 1 

, 3 , U 
=0.03| | 5%x3+2x3 == 5%14+2x1 3 

=0.03(15+18—9—5—2+§) 

=052 
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Exercise D.8.2 

T Find the value of k such that: 

| ke 0sxs<3 
S#)= { 0  otherwise 

is a probability density function. 

Find also P(0 < X < 1). 

2. Prove that is a probability density function. 

(o)1 0=kt 
f(x)= 0 otherwise - Find PO<X<0.1). 

3 Find the value of k such that 

X 
— 0<x<4 

otherwise 
S(x)= 

is a probability density function. Find P(2 < X < 3). 

Prove that 

siny   0<x<rm 

otherwise 
Sf(x)= 

0 

is a probability density function. Find also 

P(0.5 < X <0.7) correct to 3 significant figures. 

The time (f minutes) between the arrivals of successive 

buses at a city bus stop is modelled by the function 

-t 

; t20 
)= 

S() 2 otherwise 
0 

a Prove that f represents a probability density 

function. 

b Find the probability that if T have just missed a 

bus I will have to wait more than ten minutes 

for the next one. 

The function frepresents the distribution of the amount 

by which a machine tends to overfill 100 kilogram bags 

of cement, where x measures the number of kilograms 

that a bag has been overfilled. 

k 
— QS&E 

S#)=y x4l otherwise 
0 

a Find the value of k such that f represents a 

probability density function. 

b Find the probability that a randomly chosen 

bag contains more than 101 kg. 

The time (t minutes) spent by travellers waiting for an 

urban transit train at a particular station is modelled 

by the function . 

fm:{ e 
0 otherwise 

a Prove that f represents a probability density 

function. 

b Find the probability that a randomly chosen 

passenger will have to wait more than 1 minute. 
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c Find the percentage of passengers that will have 

to wait more than 2 minutes. 

d It is estimated that passengers who have to 

wait more than 4 minutes at the station will 

complain to the staff. If the station handles 

10000 passengers per day, how many complaints 

could the staff expect to receive per day? 

The errors in timing races at the athletics meeting are 

represented by the function: 

k1-£) 1<z<1 
S()= . 

0 otherwise 

where ¢ is the error in making the measurement with 

positive t sec representing measured times that were 

longer than those actually taken and negative values 

representing measured times that were less than the 

time actually taken. 

a Find the value of k such that f represents a 

probability density function. 

b Find the probability that the error in time 
measurement of a given race was between 0.1 

and 0.5 seconds. 

c Find the proportion of the races in which the 

absolute error in the measurement of the time 

was less than one tenth of a second. 

d The 100 metres sprint was timed at 13.7 seconds. 

What is the probability that the time actually 

taken for the race was more than 13.6 seconds? 

Prove that the function 

x>0 AJ . 
f(X)_l 0 

represents a continuous distribution for all values of k 

where k > 0. 

otherwise 

Find the exact value of a such that the function 

| 3 O<x<a 

0 otherwise 

represents a continuous distribution. 

  

Mode, mean, median and 

variance 
The mode, mean, median and variance of discrete probability 

distributions were covered in Chapter D6 of the Common 

Core Book. 

We now look at how these ideas can be transferred to 

continuous distributions. 

Mode 

The mode of a distribution is 

the value of the variable where f(x) 
the probability density is largest. 

Graphically, the mode is that 

value of x which provides 

the maximum value of the 

probability density function. 

The mode may be found using x 

calculus if the maximum point is 

not obvious from the graph. 

That is, solving the equation: /'(.x)=0. 

Mean (Expected value) 

The mean, p = E(X), is defined in a way similar to that used 

in statistics where we calculate Zxxf, the sum of the product 

of the data values and their frequencies. For a probability 

function (equivalent to frequency), this becomes: 

In practice, the terminals of the integral will be the end points 

of the domain of the function. 

Median 

The median, m, is the value of 

the variable such that half the fix) 

probability is below that value 

and half above. 

As probability is interpreted 

as area, this means that we 

are looking for a value of the 

variable that has half the area to 

the left of the value. 

  

That is, we want the value of m such that Jw S (x)dx :% i



  

Variance I 
6. E(X)= J- X =34 0 

The variance, Var(X) = o7 is calculated using a formula 

similar to the statistical formula ¢ = E(X?) - [E(X)]2 For a Z( 3.3 3 *)dr 
s ; s S i =| [=a——x# 

probability function, the variance is given by: 0\ 2 4 

3 2 oo 5] 8 20 

The standard deviation, o, of the distribution is the square :Exy —ixzs—o 

root of the variance: 8 
=12 

This result is a bit less than the mode. Non-symmetric 

distributions such as this do not necessarily have the same 

values for mode, mean and median. 

Let m be the median of f(x), then, the median satisfies the 

  

equation: 

m 1 
[" Flxyar== 
=5 2 

It is now required, is to solve for m: 

n6x’=3x° 1 J- v =3, L 

0 4 2 
[EXE):Show coordinates 

  

      

  

["(6x*=32")ar=2 = iy A \ 
0 [ 

" | | 

The mode is that value of the random variable that produces [2 - 3 f} =2 . s 

the maximum point on the probability function. In this case, 4 | mrrsecy 

we will need to use calculus to find this: 5.8 . il = 
2m——m = 

64" —3x" . . . S 
Sflx)=——— The analytic solution of this equation is beyond the scope of 

4 this course so we have used a graphical method to obtain the 

f’(x):z,x_gxz median m = 1.2285 (to 4 d.p). 
4 

Finally, to calculate the variance (and the standard deviation) 

of the function, we must evaluate: 

Equation this derivative to zero (to find the maximum point): 
o'= J:xl X f(x)de— 1’ 

  

9, 
3x——x"= 3 s 23 5 2 3 

4 : n(x)-% [ XGI -3x° dr— gt 

[ 3 t 0 4 

3x[1——x ) =0 : 3 5 : 161" =34 ) 

4 : _pex=3a 
0 4 

&= 0’_‘ 4 

- 37 x° 122 

A graph will establish which of these values provides that 10 s | 
) 

maximum value. o 
=16-1.2° 

From the graph, it can be seen that the maximum value of =016 

the function occurs when x = %. We can conclude that the Therefore, the variance, Var(X) = 0.16. 

mode is %. 

N The standard deviation is V0.16 = 0.4 
The mean is calculated using the formula: @ = .[ xx f(x)dr o 
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As f(x) is a pdf: j:f(x)dxz 1. 

J’:ax"dlvzl 

  
£+ P 

a|:x } =1 
k+1 

  
2K+l 

a -0 =1 
(k+1 j 

£(X) 

Next, the median, m, is found by solving I: S(x)ax :% 

A+l 

J artdv=a| = 
0 k+1 

ol 

(&) £+1 
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a= 
A+1 
2k+l 

=[resike 
= J:”ul‘b, 

  
£ 2 

=a 
k+2 ] 

A+2 

  
2 

=a 2 
g+l gk 
=——X— 

24 T k42 

zz(fl] 
£+2 

=1 

{ 
{ 

  

  

  £+1 
ZM 

A+1 

2 ;) 

-0 =) 

” 

o 

e 

A+1 
  

    

) 

    ) P 

Solving for m: | — | =— 
2 2 

m \F 
— == 
2 2 

m=2></r+\1/I 
2 

axal Hel 

- 2(/5}“) 

i 
That is, the median, m = 2(/"“). 

    

The function is a probability density function because the 

area is: 

A= [ (O1r—01)tr+ [ (02)ar 
2 3 

:{0'1; —0.1x:| +[024] 

:[0'12‘3_ —O.lx3]—[0'l:1 —0,1x1]+0.2><7—0.2><3 

=045-0.3-0.05+0.1+1.4-0.6 

=1 

  

  
  

The median can be found by calculating half of the area 

working from the right. This is easier than working from the 

left. The height of the rectangle is 0.2 so we need 0.2x = 0.5 

downwards from 7. So x = 2.5 and the median is 7 - 2.5 =4.5



    
The mean is 

E(X)=[(010-01)xr+ [ (02226 

01x’ 0,1x1:|] - 
=| ——-——| +[01+7] 

|: 3 2 I ? 

7(0,1><3‘ 01x3* ]_(0.1x1‘ 01x1*         - +01x7*=01x3" 
3 2 3 

=09—0A5—Jf+005+49fi09 
30 

=dL 
15 
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Exercise D.8.3 

L. For the probability function: 

1 0=x<1 
x)= , find: 

/1) { 0 otherwise 

a the mean and median. 

b the variance and standard deviation. 

2. For the probability function 

32 0<x<1 
= , find: 

f(x) % 0  otherwise " 

a The mode, mean and median. 

b The variance and standard deviation. 

3. The weights, w grams, of a species of mollusc are 

distributed according to the function 

3(-24+10x— %) 
. 4<x<6 x)= 
f) 4 otherwise 

0 

a Calculate the mode, mean and median weights. 

b Find the standard deviation of the weights. 

c Assuming that approximately 95% of the 

weights will lie within 2 standard deviations of 

the mean, find this 95% confidence interval for 

the weights of this species of mollusc. 

URTHER"PROBABILITY DISTRIBUTIO    
The time, ¢ sec, taken to test an electronic circuit is a 
variable distributed according to the function 

z 
— 0<r<L2 

S#)=y 2 i 
otherwise 

0 

a Calculate the mode, mean and median times. 

b Find the standard deviation of the times. 

c If one of the measures of central tendency was 

to be used to estimate the amount of time that it 

would take to test ten thousand of these circuits, 

which measure would give the best estimate. 

The time interval, t seconds, between the arrivals 

of customers at a large supermarket is a continuous 

random variable modelled by the function: 

FlA= { 027 £20 
0 otherwise 

a Find the modal time between arrivals. 

b Find the median time between customer 

arrivals. 

c Find the mean time between arrivals. Use an 

approximate method of integration. 

d Find the standard deviation of the times 

between arrivals, using an approximate method 

of integration. 

e Using an approximate 95% confidence interval, 

what is the longest time between arrivals of 

customers that is likely to occur? 

Find the mode, mean and median of the probability 

distribution: 

F(o)= (1%0”) 0<x<om 
: otherwise 
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Find the mean and variance of the lengths (cm) of the 

tails of a species of bird if these lengths are distributed 

according to the probability function 

6(—66+17.x—x°) 
Sf(x)= 125 

0 

6<x<ll 

otherwise 

The life span of a species of reptiles has been found to 

have a probability distribution given by: 

L e/ 120 
/(£)=1 80 i 

otherwise 

a Find the 25th percentile of the life distribution 

for this species of reptile. 

b Find an expression for F(t) = P(T < t), for t 2 0. 

F(t) is known as the cumulative distribution of 

the random variable T. 

c Sketch the graph of F(t). 

The random variable X has a probability density 

function given by 

= ax(b-x) xel0,2] 

s )_{ 0 otherwise 

where a and b are positive constants. 

a Show that:i b > 2   iia= 
66-8" 

b le(X):g,findaandb. 

c Find the mode of X. 

The time, t days, until recovery after a certain medical 

procedure is a continuous random variable having a 

probability density function 

3<£<7 

otherwise 

K 

f()=4 -2 
0 

11 

  

a Find k. 

b Find the probability that it will take a patient at 

least 5 days to recover. 

c What is the median recovery time for patients 

undergoing this procedure? 

d Find the expected recovery time, giving your 

answer to two decimal places. 

3 
a Differentiate the function /4(x)=x(1—x)">. 

b The random variable X has a probability density 

function: 

f(x):{ aJi—x x€[0,1] 

0 otherwise 

where a is a positive real constant. 

i Find the value of a. 

il Find the median and mode of X. 

il Find the exact value of the mean of X. 

Find the mean and variance of these distributions: 

  

01 0<x<2 

a f(x)=1 02 3<x<7 
0  otherwise 

¥ 0<x<l1 

b Sf(x)= % 2<x<4 

0 otherwise 

1 ~ 1<x<2 
i X 

C )= 

/ () x—2 2<x%<3 

0 otherwise  



B 
Scaling Variables 

There are also situations in which we need to transform a 

variable that is the basis of a distribution. This may be because 

we have made a systematic error in collecting the data. If, 

for example, when collecting numeric data, we write down 

numbers that are all 10 too big, the calculated mean will be 10 

too big but the spread (o) will be correct. What about other 

possibilities? 

What if the data has been recorded in centimetres, but we 

want all future discussions to be conducted in millimetres? 

We will focus on normally distributed variables but the 

argument applies to other types of distributions. 

Translations 

Suppose we have data on the distribution of the heights of a 

group of people. Graphically it will look a bit like this: 

  

If everybody puts on a party hat k units high then the entire 

distribution is slid k units to the right. The shape of the 

distribution is unchanged. The mean will be increased by k 
units but the standard deviation will be unchanged. 

. 

Dilations 

What if, instead, by some magical process everybody's height 

is doubled? This time the entire curve will be dilated by a 

factor of 2 from the vertical axis. As we must preserve the unit 

area, it will also need to be squashed to half its original height. 

4 

    
    

This time, both the mean and standard deviation will be 

doubled. 

URTHER ROBABILITY 

    

a This is a translation of +3. The mean becomes 15 cm 

and the standard deviation is unchanged at 2 cm. 

b This is a dilation by factor 10. The mean becomes 

120 (mm) and the standard deviation 20 mm. 

  

The conversion formula between the two temperature scales 

is: 

5 
C=—(F~32 2(F-32) 

As discussed above, the mean needs to be modified using 

both the dilation and the translation. Essentially, all we are 

doing is converting it from “F to “C. 

Mean: ,uL.:g(u}v—32)=2(86*32):30 

The standard deviation in “F = 3. What matters here is 

not the translation of -32 but the scale factor of */o"™. The 

Celsius temperature scale is compressed with respect to the 

Fahrenheit scale and so the standard deviation must also be 

compressed. 

5 
Standard deviation in Celsius is 0, = 5 X 3=1.66667 . 

The Celsius distribution is normal with a mean of 30 and a 

standard deviation of 1.66667. 
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If this is true, then we should get the same answer to the final 

calculation if we work in either scale: 

In Fahrenheit we are after T,<88 with u=86 and o= 3. 

. 5 1 L 
In Celsius C=§(88—32)=31§ Tc<315 with @ = 30 and 

o=12. 
3 

  

normCdf(-,88,86,3) 0.747508 

1 2 0.747508 
nomedf(-m,31+;,30.1+;) 4 

Either way, the probability is 0.748. 

e AT I S e S Bl = 

Exercise D.8.4 

1. In an experiment, data is collected relating to the 

amount of heat released in a chemical reaction. 

The results have a mean of 27.8 kiloCalories with a 

standard deviation of 2.9 kiloCalories. The results are 

converted to kiloJoules. Find the mean and standard 

deviation of the results in kiloJoules. 1 kiloCalorie is 

equal to 4.2 kiloJoules. 

2. The diagram shows two normally distributed variable 

that represent the distributions of the amounts of 

liquid in two packaged soft drinks. 

Lime 

Lemon 

v 
Sketch a graph that shows the distribution of the total 

of liquid in one Lemon and on Lime drink. 

3. A variable X with a mean of 2.6 and a standard 

deviation of 0.3 is transformed using Y = 2X — 1. Find 

the mean and standard deviation of Y. 

4. The speeds of cars passing a checkpoint were recorded. 

The mean speed was 65 mph with a standard deviation 

of 3 mph. What will be these statistics if the speeds are 

measured in kph? 5 mph = 8 kph. 
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5. An electrical component is composed of these parts, 

  

  

  

1 Casing 28 0.3 

6 Screws 0.8 0.05 

L Board 23 0.9 

4 Wires 1.5 0.02             

Find the mean and standard deviation of the weight of 

the complete assembly. 

6. The rubber tubes we occasionally see nailed across 

roads are there to take automatic traffic censuses. If 

there are a pair of them, it is usually because the survey 

measures speed (from the time interval between 'hits' 

on the two tubes). In a study in which the two tubes 

were 1 metre apart, the mean speed of the vehicles that 

passed the survey point was 68 kph with a standard 

deviation of 5 kph. 

a Find the time taken for a car travelling at the 

mean speed to pass from the first to the second 

tube. 

After the survey, it was discovered that the tubes had 

been incorrectly placed. Instead of being 1 metre apart, 

the actual distance was 90 cm. The timing equipment 

was, however, working correctly. 

b Use your result from part a to calculate the 

correct speed to pass between the actual 

positions of the tubes in the measured time 

calculated in a. 

c Find the corrected mean and standard deviation 

speeds for the survey. 

7. The binomial sum variance inequality states that the 

variance of the sum of binomially distributed random 

variables will always be less than or equal to the 

variance of a binomial variable with the same » and p 

parameters. Can you prove this? 

Answers 

 



 



EYAGontinuityka 
Differentialbility 

NHAS D 

Continuity 

any of the functions that we use in everyday life display 

discontinuity. This can happen in a two main ways. 

The first is that the domain is discrete and the second is that, 

even though the domain is continuous, the function displays 

'jumps'. 

1. Discrete domain 

If you are shopping and buy cartons of milk, it is only possible 

to buy whole cartons and, therefore, it is only possible to be 

charged discrete amounts (multiples of the cost of a single 

carton). 

Co
st
 

    Number of cartons 

2. Jump discontinuities 

When travelling in a taxi, it is common for the charge to be 

‘metered’. Usually, this is done by an electronic device that 

continuously displays the charge to the customer. In a simple 

model, this depends on distance travelled, though most taxis 

also have a 'time taken' component in their charges. The point 

is, however, that only certain levels of charge are possible and 

the meter jumps between them. 
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Co
st
 

  Distance travelled 

In mathematics, both these types of discontinuity occur. In 

describing our two examples mathematically, we might use 

these functions: 

Milk: 7 = number of cartons bought, C = cost: 

C=127n,n=0,1,2,3,.. 

Taxi: d = distance travelled, C = cost: 

570 0<d<3 

765 3<d<8 

920 8<d<ll 

1155 11<d<.. 

There is, however, a further possibility that is illustrated by 

the following example. 

Example E.7.1 

Sketch the graph of y= 
2 

x -4 
  

=10 

 



This seems to be made much simpler by this piece of algebra: 

=4 (x+2)(x-2) 

=2 x=2 
=x+2 

This suggests that the graph is: 

y 

(02) 

(x+2)(x-2) 
But hold on! The step: 

x=2 
= x+2 involves division 

of the numerator by x — 2. This is zero if x = 2 and the step is 

not legitimate. Alternatively, look at the original function and 

you should see that 2 should be missing from the domain as 

it, again, implies division by zero. Thus, the point (2,4) is 

missing from the graph. We show this in the following way. 

y 

(24) 

0,2) 

We have little option but to show this puncture as if it were a 

gaping hole - else how would we see it? 

In fact, the hole has no width at all as the single number 2 is 

missing. If this were a puncture in a motor tyre, it would leak 

no air at all. 

In addition to the 'puncture’ discontinuity of the previous 

example, we also need to remember the asymptotic behaviour 

of the rational functions. 

Review Chapter B6 of this book to remind yourself of these. 

    

This hybrid has two parts. The second part is a single function: 

f) 

(13) 

X 

The first part is a family of functions that are all vertical 

transformations of the same parabolic graph. However, the 

constraint x > 1 means that all the graph to the left of x = 1 is 

removed. 

  

The value of a is such that the green graph intersects with the 

red graph (family) at x = 1. 

P+a=-1+4=a=2 

Note that the green 'dot' now fills the red 'ring' and the 

function is continuous. 
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This time we are trying to make the line y=—x+4 meet the 
curve y=2— x—b atx=3. 

Thus: —3+4=2—+/3-4 

-1=—/3-4 

1=3-4 

b=2 

R s P e e I i v SR A | 

Exercise E.7.1 

1. 
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Sketch the graphs of the following functions: 

a 

Sketch the graphs of the following functions: 

Sketch the graphs of the following functions: 

a 

s 

S(x)= 

h(x)= 

h(x):{ 

—x+2 x>3 

1 

2 +1 
-1 

x<3 

-2 x<0 

x—2 0<x<4 

2 x>4 

J=x o x<a 
1-x* —-l<x<l 

Jx a2l 

x>0 

x<0 

  

x+3  x<0 
d f(x)={ e oot 

Sketch the graphs of the following functions: 

—4 A= 

a Sf(x)=1 x*-4 -—25x<2 
4 =2 

2—~% x<-2 

b Alx)=y —2x 2<x<2 
—~Jx+2 x22 

Sketch the graphs of the following functions: 
1 

=—— 220 
a f(x)=2 x+1 ,a>1 

For what value(s) of a will the following functions be 

continuous? Sketch their graphs. 

f(x):{ ar+1 x>1 

5 x<1 

® 

b /7(x)= 2x—4 x22 

a-2x x<2 

3+x2 x52 

1 
—x'+1 x22 

ax+1 x<2 

1 1 
Given that ——< :r <—, sketch the graph of: 

2 x4+l 2 
  

flx)= 28x_ gor x€(—o0,00) where a > 0. For what 
K+ 
  

2ax 
=2 x> 

value(s) of a will the function 4(x)=1 4?11 2] 

4 x<1 
be continuous? Sketch the graph of h.



Differentiability 

Functions are differentiable at a point in their domain if the 

limit: 

lim (f(x+/1)—f(x)) 
h—0 h 

is properly defined. 

By 'properly defined’, we mean two things: 

1. All the terms in the expression must exist. 

This implies that, if a function has a discontinuity (f(x) not 

defined), it cannot have a derivative (or gradient) at the 

discontinuity. We cannot draw a tangent at a point that does 

not exist. 

2. The limit must be the same if evaluated from the left 

(negative values of h) or from the right (positive values 

of h). 

This rather more complex criterion is illustrated in the next 

example. 

  

& f(x):{ 2 x<2 

x+2 x22 

If we look at the gradient limit approaching x = 2 from the left, 

we must use the first part of the rule to evaluate the fix + h) 

part of the expression (h is negative). However, f(2) = 4 must 

come from the second part of the rule: 

  

lim (/(2+/1)—f(2)): lim (2+h ] 
h—0 h h—0 

3 hl:no [4+4/1+/1 4] 

b /zlino [4 ) 

= h 0(4+h) 

=4 

NUITY AND DIFFERENTIABILITY 

  

If we look at the limit approaching x = 2 from the right (h 
positive), all parts of the limit expression from the second 
part of the rule: 

h—0 h h—0 h 

= 150 3) h—=0 \ /A 

=1 

We are being a bit pedantic in using a limiting process to find 

this gradient as the function is linear to the right of x = 2, 

but it is what should happen if the question is to be answered 

rigorously. Graphically, this is: 

Jx) 

lim (/(2+/7)—f(2)]_ lim [(2+/7)+274] 

(24) 

X 

There is a corner at the point (2,4). This is why the tangent 

is not properly defined. The function is not differentiable at 

x = 2 but is differentiable eveywhere else. 

Whilst we have used a limiting argument, the rules of calculus 

confirm this result: 

For the red curve: f(x)=x" 

S(x)=2x 
/(2)=2x2 

=4 

For the green line, the gradient is 1, confirming that the 

gradients of the two parts of the curve are different and that 

there is a 'corner'. 

For g(x), the gradients of the two parts are both 4 at (2,4). The 

function is differentiable everywhere. 

g(x) 

24 
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Exercise E.7.2 

204 

State whether or or not the following functions have 

derivatives at the x values given. 

E | 
a x)= atx=1. 

/( ) { x a2l 

b Filw)= & #<l atx=1. 
; 4—x x21 

3x° ¢ 
¢ /(x)= o <l =1 

20741 21 

x x20 

siny 
#<0 atx=0. 

& f(x):{ xsiny  x<0 atx=0. 

cos(x+m) x>0 

Find the values of a and b such that the function: 

_) Frar+b x<l f(x)—{ gl b 
is both continuous and differentiable at the point (1,0). 

Find the values of @ and #n such that the function: 

sin(zx) 1 <0 

ax x20 
S(x)= 

is both continuous and differentiable at the point (1,0). 

Prove that the function _f(,r):]f':'|,xelR is both 

continuous and differentiable throughout its domain. 

Can the same be said of: g(x)=¢", xreR? 

Use a limiting argument to prove that if /(x)=¢", 
then /’(«x)=e". What does this say about the result 

of differentiating the function a second time. 

~ 

1 

10 

  

The parabola: /(x)=ax’+bx+c,x<1  passes 

through the points (0,2), (-1,1) & (-3,-7). 

The parabola: g(x)=px’+gr+r,x>1 passes 
through the points (2,0), (3,1) & (4,4). 

Prove that the function defined by /U g is both 

continuous and differentiable for xeR . 

Investigate the continuity and differentiability of thr 

family of functions: 

x'+a 

X+a 

  S(x)= xeR,ae). 

The map shows an old and rather winding road. It is 

desired to replace the red section of the road with a 

smoother version. The brown sections are to remain. 

The replacement road meets both of these in an east- 

west direction. Find a cubic polynomial that meets 

the parts of the road that are to remain in a smooth 

manner and will provide a suitable replacement road. 

  

  

  
    
  

  

  

  

  
      
  

    
  

                
  

 



Higher Derivatives 

Since the derivative of a function f is another function, f', 

then it may well be that this derived function can itself be 

differentiated. If this is done, we obtain the second derivative 

of fwhich is denoted by f" and read as “f~double-dash”. 

The following notation for y = f{x) is used: 

First derivative Zf = ') =2 

1(%) -9 = Second derivative 
¥: dx? 

So, for example, if f(x) = x3—5x2+ 10 

then £'(x) = 3x2—10x and f"(x) = 6x-10. 

The expression = is read as “dee-two-y by dee-x- 

squared” and the expression y" is read as “y~double-dash”. 

  

It is important to have some picture of the meaning of a 

second derivative as it is reflected in the shapes of graphs. 

The second derivative measures the rate of change of the 

gradient of a curve. In general terms, this is often described 

as 'curvature'. This is a rather loose term which does have 

a precise definition that is not required for this course. A 

descriptive understanding is, however, useful. 

Sw=1 

   
frx=-2 

As the diagram shows, if the second derivative is big and 

positive, the graph 'curls upwards' more rapidly than if it is 

small and positive. The same applies to the 'downward curl' 

of graphs with negative second derivatives. The blue lines are 

more curved than the green lines. 

  

    UIFFERENTIABILITY 

a Let y = x*—sin2x then ' = 4x3—2cos2x and 

' = 12x2 +4sin2x. 

2x 
b Let fix) = In(x2+1) then /') = 2+ and 

= 2(x2+ 1) —2x(2x) _ 2-2x2 ") 
i G241y (2+1)2 

c Let y = xSin~'x then 

Y e —L 4 (1)xSinlr = —F—-+Sin-1x     
dx m 

  

dx? ( /1 7.‘(2)2 

  

  

  

    

  

  

    

1—x2 1 —x2 

_ 1 g1 

(1 =x2)J1-x2 J1-x2 

  

1-x2 1 [ — 

(A =x)1=x2 (1 =x2)J1—x2 

o 2-xr 
(1-x2)1-x2 

RN O e 1 ey oy e S A 

As we can see from Example ¢, some second derivatives 

require the use of algebra to obtain a simplified answer. 

Note then that, just as we can find the second derivative, so 

too can we determine the third derivative and the fourth 

derivative and so on (of course, assuming that these derivatives 

exist). We keep differentiating the results. The notation then 

is extended as follows: 

Third derivative is /™ (x) (“f-triple-dash”) and so on where 

the nth derivative is /) (x) or d"y. 
dx" 
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Exercise E.7.3 

  

1. Find the second derivative of the following functions. 

a flx) = x5 

b y=(+2x)* 

c fix H% where x € R 

) = — d flx) T 

€ y=(x-7T(x+1) 

f fixm B where x € R\{2} 
x—2 

g o=+ : 6 

h y= (1=2x)3 

i y = Inx 

j Ax) = In(1—x?) 

k y = sin40 

1 flx) = xsinx 

2. Find the second derivative of the following. 

a arctanx b arcsinx 

c arccosx d Faretanxy 

e arcsin.J/x f arccos(L) % 

log x 
5 Find the second derivative of the function f(x) = —— 

X< 

Find a formula for the second derivative of the function 

  

log x 
flx) = —2£. 

_r" 

4. Consider the function f(x) = L x#—1. 
x+1 

Find the first five derivatives by differentiating the 

function five times. Hypothesise a formula for the 

nth derivative of this function. Use the method of 

mathematical induction or other appropriate method 

to prove that your formula works for all whole 

numbered values of n. 
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5. Find a formula for the secolr71d derivative of the family 

of functions f{x) = (X—]) where n is a real number, 

1y, ! 

6. Given y = ! -, prove that Y. __m__ for e 1—x dxt (1—x)n*l 

Extra questions 

  

Mostly, we have dealt with the concept of ‘first derivatives’ 

and ‘second derivatives. However, there is no reason for 

not having higher order derivatives, and in fact, you might 

already have done so - for example, in physics. 

Consider the displacement function for an object whose 

position, x(t), at time ¢, t > 0 is given by x(t) = 3sin(2t) + 3t". 

Finding the first derivative gives us the rate of change of 

displacement with respect to time, which is known as the 

velocity. So, finding the first derivative gives: 

x7(2)=6cos(2£)+9¢> 

We can then determine the acceleration of this object by 

determining the rate of change of its velocity; that is, we 

differentiate: x'(#)=6cos(2¢)+9¢* giving: 

x"(¢)=—12sin(2¢)+18¢ 

So far, so good. We started with a function, differentiated 

it, then repeated the process. So, what is to stop us from 

repeating the process once again? Basically - nothing! 

That is, there is no reason why we cannot differentiate the 

expression x”(#) again - as long as the expression is 

differentiable. The resulting expression would be known as 

... yes, you've guessed correctly, the third derivative. 

x"(¢)=—24cos(2£)+18 

In this case, it measures the rate of change of acceleration. 

This process can proceed indefinitely in this case as the 

functions produced are all differentiable. The only problem 

is the notation. The fifth derivative would need five dashes so 

instead of writing x"(#) , we use the notation +(7). 

How do we interpret the 4th derivative, the 5th derivative 

and so on? Well, basically they are simply the rate of change 

of the quantity that has just been differentiated. So, the 5th 

derivative is the rate of change of the 4th derivative (and, 

if you know what the 4th derivative represents, then you'll



  

B 
know the rate of change of that). Similarly, the 3rd derivative 

is the rate of change of the 2nd derivative and the argument 

is the same. 

  

fix) = B3+e2X= f(x) = 3x2-2e2F © 

Sf 7(x) = 6x+ 4e2% 

Sf"(x) = 6-—8e2x 

So that the 4th derivative, /”/”/(x) = 16e72% 

Or, if you prefer, @) = 16e72x, 

5 3 =cos(3h) :5’{ = —2¥in(24) 
di 

% = —4cost(21) 

% = 8sin(27) 

% = 16cos(21) 

< With A(x) = xlog(x), x > 0, we have: 

R (x) = 1xlog(x) +_x'>(% = log(x) +1 

S hry =1 
X 

() = L 
X 

~h®(x) = % 
X 

FFERENTIABILITY 

    

1 
  a Starting with y = log (1 +x) we have % = 

  

1+x" 

dy_ __1 
dx? (1 +x)? 

Ay _ 2 
dx3  (1+x)3 

b Starting with y = log,(1 +x?), we have 4 X 
’ ¢ ! dx 1 +x2 

Ld%y _ 2x(1+x2)—2xx(2x) 
Tdx? (1+x2)2 

_ 2+2x2-4x? 
(1+x2)? 

2-2x2 

(1+x2)2 
  

dy _ —4xx(1+x2)2-2(1 —x%) x (2 X 2x(1 +x?)) 
  Next, o i) 

_ [ 4x(1 +x2) - 2(1 —x?) x4x](1 +x2) 

(1+x2)* 
_ [4x+4x3+8x(1-x?)] 

(1+x2)3 

- (12x—4x3) 

_ 4x3-12x 
(1 +a2)? 

e S S ks s e Vi A e | 
The examples above highlight how quickly the work involved 

grows when dealing with expressions that will require the use 

of a number of differentiation rules for subsequent derivatives. 

In example b we started by using the chain rule and log rule, 

for the second derivative we used the quotient rule and the 

chain rule (and similarly for the third derivative). This shows 

how quickly the work involved can grow when determining 

higher derivatives. 

Let’s go back to a of the above example. Notice the derivatives 

are: 

d’y 1 &y 2 dy _ _1 : 
(1+x)2 dx 1 +x’ dx? 
  

    and g = T 
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Had we continued on, we would have found that: 

dby _ 23 dS _2-3-4 
a1+ &5 (1+zx)p 
    and so on. 

In fact, by observation, we have that: 

dy _ (1)""1.2-3-4-...-(n-1) 
dx" (1+x)" 

_ DY) 
(1 +x)7 

Such a result would need to be proven by the use of 

mathematical induction, which we will leave for you to do in 

the exercises that follow. 

Exercise E.7.4 

1. Find the fourth derivative of: 

a g(x) = J;+ 

  

k(t) =383 -r1+2 

w   c h(x) = 27\:7 T 

d f(x) = cos(3x) + sin(2x) 

2. Find the third derivative of: 

a xcos(x) 

b sin(x)cos(x) 

L2 
c sin"2x 

d tan(2x) 

3. For the function f(x) = «/x2+ 1 calculate its fourth 

derivative at the origin. 

4. Evaluate the third derivative of the function 

fix) = xSin~(x) at the origin. 

5 Evaluate the third derivative, at the origin, of: 

a 2sin(x) 

b logs(x+ 1) 

c xx 3% 
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6. Evaluate f(4)(1) if fix) = 4%, 

Extra questions 

  

Answers 

    

We have been discussing continuity. 

The French mathematician Henri 

Léon Lebesgue (pronounced 'le- 

baig) (1875-1941), see right, 

investigated the implications of 

continuity in considerably more 

detail than we have here. 

  

His findings are some of the most 

mysterious and elegant in the whole of mathematics and will 

repay further investigation. 

Just as a taster, consider the function: 

i 0  x rational 
S(x)= S 

1 x irrational 

Since there is a rational number between any two irrational 

numbers and an irrational number between any two rational 

numbers, this function is discontinuous everywhere. 

It follows that it is differentiable nowhere. 

However, one of the most surprising results is that the 

function is integrable and: 

[ F(x)ae=1



  

L'Hopital's Rule 

rench mathematician Guillaume Francois 

Antoine, Marquis de I'Hépital (1661 - 

1704) is chiefly remembered for a limits 

rule that bears his name. The name is also 

frequently spelled I'Hospital. 

  

L'Hopital's Rule is particularly useful in evaluating limits that 

5 ; 0 oo 
involve expressions that resolve to 5o 

o 

L'Hépital's Rule is usually stated as: 

. +oo 
i lm S(x) (x) takes the indeterminate form g or — 

x—c g(x) 0 oo 

The full proof of this result is quite complex. We will show 

that the result holds true for the indeterminate form when 

fe)=g(c)=0. 

then: 

lim f(x)-/(c) 

lim flx)_ x—e  x-c 
roc glx) lim glx)-gle) 

x—c x—c 

lim , 

_ X—c f(X) 

lim , 

x—c () 

lim /(%) 
x—>c g'(x) 

So, aslongas ¢'(c)#0, the result is complete. 

o o 0 =+ 
If the quotient of the derivatives is still of the form 50l = 

we have to apply U'Hopital’s rule again and calculate the 

quotient of the second, third,.... derivatives at x = ¢ until the 

quotient yields a properly defined value. 

The first of our examples deals with a very important limit 

that is crucial in the first principles differentiation of the 

trigonometric functions. 

Example E.8.1 

Use L'Hopital's Rule to evaluate: lim sin(x) 

250 w 
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sin(0) 
0 

As is of the form % we can apply LHopital’s Rule. 

Letting: /(x)=sin(x), g(x)=x , we use calculus: 

S(x)=cos(x),g'(¥)=1 

lim sin(x)= lim cos(x) 

x>0 x x=0 1 

. cos(0) 

1 

=1 

| P L A e SR T e e - I M Bl R 

  

Let: f(x)=In(x),g(x)=x-1 

S ($)=1g ()=1 
f(1)=In(1)= 0,g(1)= 1-1=0 and so LHopitals rule is 

applicable. 

1 

lim In(x)_ lim 
=1 x-1 x=1 1 

=1 

This cannot be fully checked using a calculator as any attempt 

to evaluate the expression at x = 1 will give an error message. 

However, plotting the graph and using trace will support our 

answer: 

  

  

£1(0)= Infx) 
  

x=1 

X 02 
~1.71 0.2 

b'd 

f:( 095 , 1.03 ) 
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Let: f(x)=cot(x),g(x)=In(x) 

We have a — limit and can use L'Hopital’s Rule. 
—oo 

1 

lim cot(x)  lim (_Siflz(x)] 
x—0 In(x) x—0 ( J 

lim x 

x—0 sin’(x) 

  

R 
[
 

  

Thisis O and we apply the rule a second time. 
0 

lim x lim 1 

x—0 sinz(,r)= x—0 2sin(x)cos(.x) 
  

lim 1 

x—0 sin(2x) 
  

=—o0 

  

We havea = limit and can use LHopital’s Rule. 
oo 

1 

lim In(x) lim 5 

x—oo  x” 
  

x—roo px"! 

 



  

This product is of the form 0 x —eo and so the expression must 

be rewritten as: 

lim il lim In(x) 

X0 x—0 
  

1 
x 

1 

Next, use the rule: lim @: lim v 
x>0 1 x>0 _ 1 

x x’ 

lim 
= —x 

x—>0( ) 

=0 

  

This product is of the form 0 x e and so the expression must 

be rewritten as: 

(7 

I z\_  lim S“’(f] 
m xsin(—)‘ K 

X —>oo X X—roo L 
x 

0 
This is of the form 550 we can apply UHopital’s Rule. 

0 
This is of the form 3 Sowecan apply LHopital’s Rule. 

Let: f(x)=1-tan(x), /"(x)=—sec’(x) 

g(x)=cos(2x), g'(:xr)=-2sin(2x) 

lim lim 
I—tan(x) . —sec’(x) 

x> cos(2x) x> —2sin(2.x) 

  

  

Exercise E.8.1 

L. Determine the following limits. 

a lim ( A +sin2x j 

x—0 \x—sin2x 

  lim (xffrj 
x— 1 \sin2x 

lim sin2x j 

Z ( X—)E cosx 
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2: 

212 

Determine the following limits. 

b lim [ x J 
x—oo \ ™ 

b lim (HJ 
X —> oo X 

  lim ( 2x j 

x—oo \ x+Inx 

Determine the following limits. 

a lim [ 2x ] 

x—0 \ xr+sinx 

lim cosx—1 

b Q= xr—0 ¥ 

. lim [ x—sinx ] 

x—0 x' 

Determine the following limits. 

lim 
  sinx—1 

! z ( J x—> o cosx 

lim ( 1 j 
xln| 1+— 

xr—0" x 

c lim (lnx—(x—l)) 

xr—1 #—1 

Determine the following limits, if they exist. 

  

  

lim 

a 7 (tanx+secx) 
o= 

b lim [L, 1 ] 

x—=1 \lnyr x-1 

) lim [ Inx J 
c 5 

=1 \x—x 

6. What is wrong in the calculation: 

lim ( cosx)a lim [ —sinx ) 

x—0 \ &? x>0\ 2x 

_lim [ 7cosxj 

=0 2 

_ 1 

2 

T Determine the following limits, if they exist. 

5 lim [if. ) 

xr—oo \x 

lim 1_1 

x—eo (¢ 

8. Evaluate the following limits, if they exist. 

lim a—sinx 

x>0 i 

lim 1-—cosx   

x—0 sin’x 

lim (x'—74"+8x" -2 
xr—1 X +5x—6 

Extra questions 

  

Answers 
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Implicit Differentiation 

Implicit relations 

ost of the equations that we have dealt with so far have 

been expressed in the form y = f(x) . For example, 

y = sin(2x)+1, y = x>-2x, y = In(x—e¥), that is, y has 

  

been expressed explicitly in terms of x so that for any one 

given value of x we obtain a unique value of y by substituting 

the x-value into the given equation. 

Expressions such as xZy+y-2 =0, sin(xy) =1, 

"tV = x+y, are called implicit equations because these 

equations define y implicitly as a function of x. Note then 

that although y = x? defines y as an explicit function of x, 

the equation y2 + (x +x2)y+x3 = 0 defines y implicitly as 

functions of x - in fact, we have that two functions are defined 

3 =0 - they 

are y = —x and y = —x2. We shall see how it is sometimes 

b ; 2 5 
implicitly by the equation y*+ (x+x?)y+x 

possible to extract functions from an implicit equation. 

It may be possible for an implicit function to be rearranged 

to form an explicit function. For example, using the equation 
5 2 = 
x2y+y-2 =0 we have that (x*+1)y =2 and so, we 

  obtain the equation y = which defines y explicitly in 

  

terms of x. 

Using the implicit function p2 + (x +x2)y+x3 = 0 we have 

(after expanding and grouping) that 

_1'2 + (x + .\'31)' +3 =0 v+ \‘z)l_\‘ + x) 0=y = —x 

or y = —x2. So, we see that in this case two functions are 

defined implicitly by the equation y? + (x +x?)y +x3 = 0, 

In fact with more complicated equations it may not be possible 

to even produce an expression for y, i.e. to solve explicitly for y.   

Sometimes even simple equations may not define y uniquely 

as a function of x. For example, if we consider the equation 

e* "V = x+y we realize that it is not possible to obtain an 

expression for y explicitly in terms of x. The question then 

arises, “How can we differentiate equations such as these?”. 

We start by considering the equation x’y = 2. As y is 

implicitly defined as a function of x, then, one way of finding 

  

the derivative of y with respect to x is to first express y 

explicitly in terms of x: 

2 _dy _ 

dx 

  

2 we have y =      So, from > 
     X X~ 

This method works well, as long as y can be expressed 

explicitly in terms of x. 

Now consider the equation 2x2+y3—y = 2. This time it is 

not possible to express y explicitly in terms of x and so we use 

a procedure known as implicit differentiation. 

The key to understanding how to find i‘j\; implicitly is to realise 

that we are differentiating with respect to x - so that terms in 

the equation that involve 'x's only can be differentiated as 

usual but terms that involve 'y's must have the chain rule 

applied to them (and possibly the product rule or quotient 

rule) because we are assuming that y is a function of x. 

Before we deal with the equation 2x? +y3 —y = 2 we discuss 

some further examples. 

To differentiate y* with respect to x, with the assumption 

that y is a function of x we use the chain rule as follows: 
1. 2 {1, 3, dy 5 dy ‘_(\u) =23y YD = 3y2. 4 

dx ™ dy~ dx dx 

To differentiate siny with respect to x, with the assumption 

that y is a function of x we use the chain rule as follows: 
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dsinyy = Sging)- D = Ay E)—c(smy)—dy(sm)) = cosy = 

Notice then that to differentiate y” with respect to x, with the 

assumption that y is a function of x we have: 

To differentiate xy*> with respect to x, with the assumption 

that y is a function of x we use the product rule and chain rule 

as follows: 

  

Ao By - Hpns 3 A dx(” ) dx(a)x; +xx 0 ) (product rule) 

=1xp2+xx L—‘i(yl) B D ‘—1';] (chain rule for y?) 

=32+ x[Zy - ‘—IZ:I . 
dx 

And so we have that %(xyz) = y2+2xy- Z—i ; 

Now let us return to the equation 2x2+y3—y = 2 and find 

the gradient of the curve at the point (1, 1). 

We start by differentiating both sides of the equation with 
respect to x: 

. od 2.3 . d Z(2x2 43 ) = = 1.e.dx(2)x y>=y) d,\'(z) 

Then, we differentiate each term in the expression with 

respect to x: 

Aoy, dosy doy dx(zx )+d.r0 ) dx(") 0 

  

;s d dy _dy ax+ L3y v _dy _ Use the chain rule X dyO/ ) o 

dy dy 4x+(3y2) L - X+ By) == 

Then we group the jl terms and factorise: 
X 

4x+(3y2-1 )gl =0 
dx 

Then, we solve for fl'l': 4y . B s 
dx dx 3y2-1 

The first thing we notice is that the derivative involves both x 

and y terms. Now sometimes it is possible to simplify so that 

there are only x terms in the expression and sometimes it can 

only be left as is. In this case it will be left in terms of x and y. 

Then, to find the gradient of the curve at the point (1, 1) we 

substitute the values x = 1 and y = 1 into the equation of the 

derivative: 4V - __4 _ _ 5. 
dx 3-1 
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a Differentiating both sides with respect to x (which can 

be abbreviated to diff. b.s.w.r.t x): 

d 50 —dsy dn oy, d dx(Zx +xy) dx(S) "dx(z'\ )+dx(”) 0 

disou Aol = i 4x+ [E(") Xy+xx de )] 0 (Using product rule) 

4\’+[] Xy+ x‘fl} =0 
dx 

dy _ . 
o x o 4x—y 

od o _(4xty) 
dx x 

b Here, the first term must be differentiated using the 

quotient rule. We consider this term on its own first. 

Its derivative with respect to x is: 

d s _, i(k) ~ xxdx(y)—_yxdx(x) ~ Xxdx V 

dx\x x2 x2 

Then, diff b.s.w.r.t.x we have: 

d(y ,z):i 3 i[.x) 43,2y = 652 
dx(ers" dx(zx ):>dx X +dx(3y) 6% 

xx @ y 
dx +()‘,X£/l’ = 6x2 
x2 dx 

cxx @ —y+6x2y x D _ g4 (multiplying through by x?) 
dx dx 

Y62y rhy i dy et 6x2%y) = 6x*+y (grouping the e terms) 

Ldy _ 6x4 +y 

Tdx  x+6x2y



  

- [ d . 
¢ diff bswrtx: 7 (xSin Loy = E(ez-‘) 

(Using product rule for L.H.S and chain rule for R.H.S) 

d - A igin-1y) = D oamd Ec(x) x Sin~ly+xx dx(Sm y) dy(e ) )dx 

1x Sin"y+xd%(5in*‘y)% = 282"’% (chain rule) 

dy x ) 
= Q2L dy 

- ‘,zdx = dx 
  Sin~ly + 

X 

-2 

dy _ J1-y2(Sin"'y) 

dx 2021 -y2—x 

  

L o3 dy . dy ~Sin~ly = (2e*-‘ - )(—}r (grouping the == terms) 

Exercise E.9.1 

dy 
1, Find the first derivative, L'i‘;‘r , of the following relations 

in which y depends on x. 

a 2+x2+y =6 b —3+x2+)2 =5 

c Liy2o14 d y+xy = 9 2 Y YT xy 

e 4=yt+tyxer f cosx +xy = 12 

g x+In(y) =8 h lJr,\'jyzfll 
x 

i 2x +ysinx = 5 j (x+y)?2 =12 

k xt =yl 1 25ty =x 

2 fix) is a relation on a real variable x such that 

) f(x) = ¢—5 . Find the coordinates of the 

point for which x = 1 and the gradient of the graph of 

the function at this point. 

X2y 
3. A curve has equation ET +2x =3, 

Differentiate the equation implicitly and hence prove 

that: 

  

=2x+ e"'l""(va + ,rzflj ] dx ) 

Use implicit differentiation to find the coordinates 

of the points on the circle x> ~3x+y>—4y = 7 for 

which the gradient is 2. 

Consider the conic section with equation: 

x2+xy—y2 = 20. 

a Make y the subject of the equation. 

b Prove that the domain of the relation is 

J—o0, 41U [4, 0] . 

o 

. s dy 
Find an expression for 2. 

dx 

d Use a to eliminate y from your expression for 

dy, 
dx 

) + 
e Hence prove that as x — teo, &, 5£.5 . 

dx 2 Jg 

f What type of curve is represented by 

x2+xy~y2 =207? 

A curve has equation x* +y* = 16 

a Find the domain and range of the relation. 

; dy . - 
b Express the gradient, 7y in terms of x and y. 

c Eliminate y from your expression in part b. 

d What is the gradient in the region of the y-axis? 

Consider the family of relations x>+ y?" = k" 
where k is a constant and 7 is a positive integer. 

e Find the domain and range of the relation. 

d_v 
f Express the gradient, 7, in terms of x and y 

and hence describe the form of the graph of the 

relation as n becomes large. 

a 1If /7"3{‘12 ¢ where c and 1" are real constants, 

find 7 
dp 

b Find 4Y ifx—m = mxy 
dxe y" n 
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8. Find the slope of the curve 

5 B+yd—x2y =7 at(1,2) 

b x3+y3-3kxy = 0 at (%k, %A) 5 

9. Find% if 
dx 

a log (xy) = y,x>0 

b xTan~1(y) = x+y. 

10.  The graph of the curve 

(x2+32)2 = 4xy2  is  shown 

alongside. 

a Find the gradient of the 

curve at the point where 

x = 1. Explain your result. 

b Find the gradients of the curve where y = %, 

giving your answers to 2 decimal places. 

Related Rates 

So far we have only dealt with rates of change that involve 

one independent variable. For example, the volume, V units’, 

of a sphere of radius r units is given by ¥ = Zm3. To find 

the rate of change of the volume with respect to its radius we 

differentiate with respect to r: 

. odV _ 4 ie. ‘d—, = 511.’><3r2 = 4mr?, 

Now consider this sphere being placed in an acid solution so 

that it dissolves in such a way that: 

1. it maintains its spherical shape, and 

2. its radius is decreasing at a rate of 1 cm/hr. 

How can we find the rate at which its volume is changing 

when the sphere’s radius is 2 cm? 

Note that we are looking for the rate of change of volume, that 

is, we want to find dTV (not dTV as we found previously - 
dt ar 

216   

when we specifically requested the rate of change with respect 

to r). The difference here is that we want the rate of change of 

one quantity (in this case the volume) which is related to a 

second variable (in this case the radius r) which is itself 

changing. 

Problems of this type are known as related rates problems 
and are usually solved by making use of the chain rule. 

We now consider the problem at hand. We have: 

Want: rate of change of volume that is, we want to find %/ 
a 

When: r = 2. 

. L . dr _ 
Given: radius is decreasing at a rate of 1 cm/hr, o -1 

Need: This is the tricky bit. Knowing that we will need to use 

the chain rule, we start by writing down the chain rule with 

the information we have. Then we try to fill in the missing 

pieces. 

This will often lead to what we need. 

cav [, & Step 1: T I>< T 

Step 2: Ask yourself the following question: 

“What do I need in the missing space to complete the chain 

rule?” 

- Vv 
The missing piece of information in this case is a 

That is, we have v _ dv dr , which works. 
dt dr = dt 

Step 3: Once you have decided on what you need, then find 

an equation that will enable you to differentiate. 

Some warning! Step 3 is the tough bit in the question. 

Sometimes we are lucky and we know of an equation but 

sometimes we need to somehow ‘create’ the equation. 

In this case we do have an equation; p = %‘nfl Z—V = 4nr2. 
3 r 

And so, using the chain rule we have ¥ _ 4rr2x dr ¥ . 

di dt 

Note: It is very important not to substitute any values until 

the very end. 

The last step is to find %/ at the specified radius with the 

iven rate, ¢© = _| . 
5 dt 

'Ihatis.d?i/ = 4n(2)2x 1 = 16m- 

So, the volume is decreasing at 167 cm*/hr.



  

From the data, ar _ i3, 
dt 

This is the mathematical formulation of the statement ‘the 

radius of a circular oil patch is increasing at a rate of 1.2 cm 

per minute’ where r is the radius and t is the time (in the units 

given in the question). The radius is increasing and so the 

rate is positive. The next step is to identify the rate of change 

that we have been asked to calculate. In this case, the question 

asks: ‘find the rate at which the surface area of the patch is 

increasing. 

If we define the area as A cnn’, the required rate is i{—’: " 

So we have: Want: gd 
dt 

When: r=25 

Given: dar o 1.2 
dt 

. i Ld4 _ dr Need: (chain rule): 7 IX a 

The missing piece must therefore be ;. 

dA _ dA  dr 
Therefore, we have, 5 ar X 

We need to find an expression for A in terms of r. 

This can be done by looking at the geometry of the 

situation. The oil patch is circular and so the area is given by 

A=nr2=9 _op,. 
dr 

Substituting into the chain rule gives: le_;l = 27mrx dT" . 
« 

Then, with r = 25 and (LI{—” = 1.2 we have: 

% = 2m(25)x 12 = 60m= 188.5 cm2min! . 

That is, the area is increasing at approximately 188.5 cm’min . 

  

VIP w o=\ 

Note: A useful check that the chain rule has been used 

appropriately is to use the units of the quantities involved. For 

Example 6.3.14 we have that: 

a4 _ ‘flxd—' = cm?em~! xem!'min~! = cm2min! 
dt dr " dt 

which is the correct unit for 94 , 
dt 

  

We start by determining what variables are involved and 

see if a diagram might be helpful - usually one is (even if 

it's only used to visualize the situation). In this case we are 

talking about a volume and a length, so we let V cm® denote 

the volume of the cube of side length x cm, giving us the 

expression V = x°. 

Next we list all of the information according to our want, 

when, given and need: 

dx 
Want: = 

When: V =1,000 

Given: AV . 24 
dt 

. (chain rale) 4 — [ @¥ dx Need: (chain rule)m lx a we need ar 

de _ dv dv Sot_hatm = a 

However, we have V as a function of x and so it will be easier 

to first find 9 and then use the fact that: 

  

dx 

de _ 1 
av_— dv 

dx . 

dv dx 1 dv V=33t 32 % _ 1 a¥ Then,as V = x° = e Ix&=s 7 332 X ar 

We know d—l’/ = 24 but, still need a value for x. 
a 

From V¥ = x3 we have 1000 = x3..x = 10. 

So, &= —L 4= 8 _gos. 
di  3(10)2 100 

That is, the side lengths are increasing at 0.08 cms-. 

[ L e e R e S| 
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I O e 
It is important to realize that when we reach the ‘Need:’ stage 

there are more ways than one to use the chain rule. 

For example, with Example E.9.3, rather than using 

dx _ dx  dV and then realizing that we need to find dv 
dt dV  dt dx 

and then invert it, we could have used the chain rule as 

follows: 

dv _ dv_ dx dx _dx _ 24 % 3% = 32x % = 22 T e ar so that 24 = 3x X—m = c3 

Using the chain rule in this manner has a certain ‘logical flow’ 
to it, in that everything seems to ‘fit nicely’ But remember, as 

long as the chain rule expression contains the ‘need, ‘want’ 

and ‘given’ it should not make much difference at the end. All 

that we can say is that as you solve more and more of these 

problems you will be able to make the ‘best’ decision available 

at the time. 

  

water 

10 cm 

   50 cm 
\ / 

\ / l \/ 

Figure A 

  

  
Figure B 

Let the water level at time t min have a height h cm with a 

corresponding radius r cm and volume V cm’. 

We now list our requirements: 

dh 
Want: B 

When: h=10 

) dv _ 
Given: a 5 

s dav _ dh dv L .= X = LA Need: (chain rule) ar I 2w need T 

Before we can find % we will need to find an expression 
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for Vin terms of h. We do this by making use of Figure B - a 

cross-section of the inverted cone. The information in Figure 

B prompts us to make use of similar triangles. 

S0 _ ko, 1 ‘We then have, -7 S 511 . 

The volume of wa{er in the cone when it reaches a height i cm 

isgiven by: ¥ = ~mr2h. 
3 

Then, substituting the expression r = %h into the volume 

2 

equation we have jr — 1 (l )' Z My dV o m s q v 3" 5h h 75h == 2511 

We can now complete the chain rule: 

av _dv_ dn dV _ n,, dh 
dt dh”dt”dt 25 dt 

5= Zp2edh dh 125 
2 25h “ar S ar Th? 

dh _ 125 
Then, when h = 10, we have @ 100w 03978 | 

i.e. approximately 0.4 cms™. 

P o IO o i e 0=y Ny Sa e e 

Exercise E.9.2 

1. The radius of a circle is increasing at 2 cm/s. Find the 

rate at which: 

a - its area is increasing and b - its circumference is 

increasing. 

2 The side lengths of a square are increasing at a rate of 

3 cm/s. Find the rate at which the area of the square is 

increasing when its side length is 1 cm. 

3. The sides of an equilateral triangle are decreasing at a 

rate of +/6 cm/s. Find the rate of change of: 

a - the area of the triangle and b - the altitude of the 
triangle. 

4. A solid 400 g metal cube of side length 10 cm expands 

uniformly when heated. If the length of its sides expand 

at 0.5 cm/hr, find the rate at which, after 5 hours: 

a its volume is increasing. 

b its surface area is increasing. 

c its density is changing.



    

8A: 

10. 

A drinking glass is shaped in such a way that the 

volume of water in the glass when it reaches a height h 

cm is given by ¥ = %h3 cm?, 

Water is poured into the glass at 2 cm’s'. At what rate 

is the water level rising when the depth of water is 3 

cm? 

An ice cube, while retaining its shape, is melting and 

its side lengths are decreasing at 0.02 cm/min. Find the 

rate at which the volume is changing when the sides 

are 2 cm. 

A liquid is pumped into an upright cylindrical tank of 

radius 1.5 m at a rate of 0.25 m’s”'. 

At what rate is the depth of the liquid increasing when 

it reaches: 

a a depth of 1.25 m? 

b a volume of 10w m*? 

A conical pile of sand with a constant vertical angle of 

90° is having sand poured onto the top. If the height is 

increasing at the rate of 0.5 cm min™', y AN 

find the rate at which sand is being - ) . 

poured when the height is 4 cm, 

giving an exact answer. o . 

An aeroplane flies over an airport at an altitude of 

10,000 metres and at a speed of 900 kmh™'. Find the 

rate at which the actual distance from the airport is 

increasing 2 minutes after the aeroplane was directly 

over the airport, correct to the nearest whole number. 

The temperature inside a chemical reaction vessel, 

initially 35°C is rising at 7°C per hour. 

The rate at which the reaction happens is modelled by 

the function: rate = -= + 3, where  is the temperature 

of the reaction vessel 21n °C. Find the rate at which the 

reaction is occurring after 5 hours. 

11, 

12. 

13: 

14. 

15. 

MPLICIT DIEFERENTIATION 

A racing car, travelling at 180 km per hour, is passing 

a television camera on a straight road. The camera 

is 25 metres from the road. If the camera operator 

follows the car, find the rate (in radians per second) 

at which the camera must pan (rotate) at the moment 

when the car is at its closest to the camera. 

The diagram shows a water trough. Water is being 

poured into this trough at 2.4 cubic metres per minute. 

3m 

2m 5% 
R T 

2m 
a Find an expression for the volume of water in 

the trough in terms of its depth. 

b Find the rate at which the water level is rising 

when the depth is 0.5 metres. 

c Find the rate at which the exposed surface area 

of the water is increasing after 1 minute. 

A square-based pyramid with a fixed height of 20 

metres is increasing in volume at 2 m*min~'. Find the 

rate at which the side length of the base is increasing 

when the base has an area of 10 m” Give an exact 

answer with a rational denominator. 

The length of the edge of a regular tetrahedron is 

increasing at 2.5 cms™'. Find the rate at which the 

volume is increasing when the edge is 4 cm. 

A man 1.8 m tall is walking directly away from a street 

lamp 3.2 m above the ground at a speed of 0.7 m/s. 

How fast is the length of his shadow increasing? 
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16. A ladder 10 m long rests against a vertical wall. The 

bottom of the ladder, while maintaining contact with 

the ground, is being pulled away from the wall at 0.8 

m/s. How fast is the top of the ladder sliding down the 
wall, when it is 2 m from the ground? 

Extra questions 

  

Optimization Problems 

Chapter E4 of the SL text introduced some of the calculus 

techniques that are useful in finding the maxima and minima 

of graphs. We now look at using these techniques to solve 

problems. Problems that require the use of this theory can 

be found in many real-life situations: manufacturers wanting 

to minimize their costs, designers wanting to maximize 

the available space to be used (under specific constraints), 

farmers wanting to maximize the area of a paddock at a 

minimum cost, etc. These types of problems often require 

the construction of an appropriate function that models a 

particular situation, from which some optimum quantity can 

be derived or a critical value found for which this optimum 

quantity exists. We now consider a number of examples to 

highlight how differential calculus can be used to solve such 

problems. 
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a  ST=UP+QR=x+y. 

b There is 20 m of fencing available, therefore, PU + UT 

+ TS + SR =20 

That is, 2x + 2(x + y) = 20 

and so y =10 - 2x - Eq. (1). 

Note: As y 2 0 = 10 - 2x 2 0<>x < 5. We must also 

have that x 2 0. 

That is, there is a restriction on x, namely 0 < x < 5. 

c The required area, A m’ is 

found by breaking the area into 
three sections, so that: 

A=xy+xy+x° 

  

2 
=2xy+x 

=2x(10 - 2x) + x*, given that y = 10 - 2x 

=20x-3x5,0<x<5 

d To find stationary points we first determine the first 

derivative: 

%:20~6x 

20 10 
and then equate this to zero. 20-6x=0=x= 5= 5 

To establish that this is a maximum, we can: 

i Note that the graph is a 'vertex up' parabola. 

il To the left of the turning point the derivative 

is —ve and to the right it is +ve. 

iii The second derivative (-6) is negative. 

All three tests indicate that we have a maximum point. 

We also must observe that it lies within the domain. 

10 10y 100 , 
=200 — |-3| — | =—m° Aw=20(2)-3(2) -5 

e B T v MR gt AT 0 et 0 = 0%



Example E.9.6 

In the lead-up to the Christmas shopping period, a toy. 

distributor has produced the following cost and revenue 

models for one of his toys: 

Cost: C(x)=2515x—000015+,0 < x <6500 

Revenue: R(x)=7390x—0.0009x",0< x <6500 

where x is the number of units produced. 

What is the maximum profit that the distributor can hope 

for using these models? 

  

The profit is found by determining the Revenue — Cost, so, 

letting $ P(x) denote the profit made for producing x units, 

we have: 

P(x)=R(x)-C(x) 

=(7.390.r-0.0009.+*)— (25152~ 000015.+*) 

=4.875x—000075x 

Next, using the derivative to find any stationary points: 

P'(x)=4875-0.0015x and equating to zero: 

4.875-0.0015x=0 

4875 
x= 

0.0015 

=3250 

The discrimination tests all indicate that this is a maximum 

and so: 

  

S 

2. (x)=4875(3250)—0.00075(3250) 

=7921.875 

The maximum profit the distributor will make is achieved by 

making 3250 units and is $7921.875 = $7 922. 

MPLICIT DIFEERENTIATION 

  

Example E.9.7 

Two heavy industrial plants are located 12 kilometres 
apart. It is found that the concentration of particulate 
matter in parts per million in the pollution created at a 
plant varies as the reciprocal of the square of the distance 
from the source. If plant 1 emits eight times the particulate 

matter of plant 2, the combined concentration, C, of 

particulate matter at any point between the two plants is 

found to be modelled by: 

1 8 
et ()5 < 2 <115 Glx) x’+(12—x)2 05< 

A   
Plant 1 X i sy Plant 2 
What is the minimum concentration of particulate matter 

that there can be between the two plants? How far from 

Plant 1 will this occur? 

  

We need to determine where the stationary points occur, that 

is, we solve for C'(x)=0. 

8 1 
C(X):?+m 

=8x7+(12—x)" 

C'(x)=—-16x"+2(12—-x)" 

Equating to zero: 

—16x°+2(12—x)" =0 

1 2 
x (12-x) 

lo__ 2 
3 

¥ (12-x) 
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Testing for the nature of this point: 

C’(7)=—£+i=—0.03\. 
343 125 

c’(9)=~£+l=0.05/‘ 
729 27 

so the point is a minimum. 

CO)=+— 
8* (12-8) 

i 
T 16 % 

So the minimum concentration is — parts per million and 

occurs 8 km from Plant 1. 16 

  

Let P be the location of the bus stop and x km the distance 

from R1 to P along R2. This means that x > 0 (x = 0 if on R1) 

butx<1(x=1ifatC). 

Let the sum of the distances be S km, then, S = AP + PC + BP 

Using Pythagoras’ Theorem we have: 

AP*=2% 4 1% = AP=\4+ +*, as AP>0 and, 

BP*=2’+x’ = BP=\4+ 1", asBP20 

Therefore: §= 2m+(l—x),0Sx <1 

Next, we find the derivative and equate to zero. 
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  £—2xlx21x ! +(-1 
dx 2 Va+x? 

2x 
  

2x—4+x*=0 

2x=v4+x’ 

4x'=4+x* 

310 =4 

A,f:ir\/E 
3 

=+1.1547 

However, neither one of these critical values lies in the 

domain S ( = [0, 1]). This means that we will need to look at 

an end-point minimum. 

When x =0, §=24+1=5, giving us a maximum. 

When x=1, S=2v4+1° +(1-1)=25 

Hence, the minimum value of S occurs at x = 1 and has a 

value of 2¢/5 km (approx. 4.47 km). Therefore, the bus stop 

should be placed at shop C. 

Exercise E.9.3 

L. A ball is thrown upwards and after t seconds reaches a 

height of h m above the ground. The height of the ball 

at time ¢ is given by the equation h = 19.6¢ - 4.9 + 3. 

What is the maximum height that the ball will reach 

from the ground? 

2. The running cost, $C per kilometre for a new car is 

modelled by the equation C = 20 + 0.2v* - 0.6v, where 

vkm/h is the average speed of the car during a trip. 

a At what speed should the car be driven to 

minimize the running cost per kilometre?



b What is the minimum running cost per km for 

this car? 

€ Comment on your answers. 

The total revenue, $R, that a company can expect 

after selling x units of its product - GIZMO - can be 

determined by the equation: 

R =-x*+510x> + 72000x, x = 0. 

a How many units should the company produce 

to maximize their revenue? 

b ‘What is the maximum revenue to be made from 

the sales of GIZMOs? 

A retailer has determined that the monthly costs, $C, 

involved for ordering and storing x units of a product 

can be modelled by the function: 

7500 
C(x)=25x+"—,0<x<250 

X 

What is the minimum monthly cost that the retailer 

can expect? Note that x is an integer value. 

The marketing department at DIBI Ltd. have 
determined that the demand, at $d per unit, for a 

product can be modelled by the equation: 

80 
d=— 

Jx 

where x is the number of units produced and sold. The 

total cost, $C, of producing x items given by: 

C=200+0.2x 

What price will yield a maximum profit? 

The cross-section of a small 

hill is modelled by the 

curve with equation 

1, 1 
y:—x‘sin(—xJ,OSxSZH 

8 2 

10. 

L. 

MPLICIT DIFEERENTIATION 

  

where x metres is the horizontal distance from the 
point O and y metres is the corresponding height. 
What is the maximum height of the hill? 

A 10 metres long sheet of tin of width 60 centimetres is 

to be bent to form an open gutter having a rectangular 

cross-section. Find the maximum volume of water 

that this 10 metres stretch of guttering can carry. 

  

A 20-metre long piece of wire is bent into a rectangular 

shape. Find the dimensions of the rectangle that 

encloses the maximum area. 

If x + y = 8, find the minimum value of N = x* + y*. 

A swimming pool 

is  constructed as 

a rectangle and a 

semicircle of radius 

r m. The perimeter 

of the pool is to be 

50 metres. Find the value of r and the dimensions of 

the rectangular section of the pool if the surface area 
of the pool is to be a maximum. 

A roof gutter 

is to be made 

from a long ;. 

flat sheet of 

tin 21 cm wide 

by turning up 

sides of 7 cm so that it has a trapezoidal cross-section 

as shown in the diagram. Find the value of that will 

maximize the carrying capacity of the gutter. 

  

   
7cm 
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At the Happy Place amusement park, there is a roller 

coaster ride named ‘The Not-So-Happy Ride’ A section 

of this ride has been created using a scaled version of 

the model given by the equation: 

1 
y=sinx+ Esian,OSx <2r 

a Sketch the graph of this curve. 

b What is the maximum drop that this ride 

provides? 

c At what point(s) along the ride will a person 

come to the steepest part(s) of the ride? 

A rectangle is cut from a circular disc of radius 18 

metres. Find the maximum area of the rectangle. 

Two real numbers x and y are such that x + y = 21. 

Find the value of x for which: 

a the product xy is a maximum. 

b the product xy” is a maximum. 

If x + y = 12, find the minimum value that x* + y* can 

have. 

A farmer wishes to fence off a 

rectangular paddock using an 

existing stretch of a river as one 

side. The total length of fencing 

available is 100 m. Let x m and 

y m denote the width and length 

of this rectangular paddock 

respectively, and let A m* denote 

its area. 

a Obtain an expression for y in terms of x. 

b Find an expression for A in terms of x, stating 

any restrictions on x. 

c Determine the dimensions which will maximize 

the area of the paddock. 

    

17. A closed rectangular box with square ends is to be 

constructed in such a way that its total surface area is 

400 cm?. Let x cm be the side length of the ends and 

y cm its height. 

  y 

x 

X 

a Obtain an expression for y in terms of X, stating 

any restrictions on x. 

b Find the largest possible volume of all such 

boxes. 

Extra questions 

  

Answers 

 



  

    

AHL 5.1'G, 

AHL 5.16 
AHLS5.17 

Further Integration 

e can obtain the antiderivative, F(x) + ¢, of a function 

f(x) based on the result that d%(F(x)) = flx). 

fhatis — 

For example, if we know that %(sinSx)= 5cos5.x , then: 

  

".55055141' =sinbx+c. 

  Similarly, if %(ln(xl +1)): lej—l , then: 

  J. Z,X :b(:ln(xz-t-l)-H‘. 
x +1 

We are using recognition to obtain antiderivatives. Such 

a skill is crucial to becoming successful at finding more 

complex antiderivatives. 

One particularly important result is based on the chain rule, 

from which we obtained the generalised ‘power rule’ for 

differentiation; 

d 

Z([f("')]”)=fl.f
 W] 

From this result we have: 

J.‘:,—_I;([/'(.\-)]n)d\- = In./'(,\-)[/'(_\»)]n e 

so that _[n_f"(x)[/(x)]" ~ldy = [fx)]"+ec 

This leads to the result: 

ENlOlIntegrati@gn’ Methge@s 

  

    

   

   

The use of this result is dependent on an ability to recognise 

the expressions g(x) and its derivative g'(x) within the 

integrand. We consider a number of examples. 

  

a We observe that 2x(x2+9)5 can be written as 
g(®)[g(x)]° with g(x) = x2+9. 

Therefore, by recognition we have: 

o2 5+1 " 

ST A 
  JZ,\’(.\‘Z +9)5dy = 

= é(xfi 9t 

b We observe that (3x2 + 1)(x? +x)? can be written as 

2(0)[g(x)]? with g(x) = x3+x. 

Therefore, by recognition we have: 

J(}.\'z +1)(x3 + x)2dx 1 3 N2 1 \ 2Jrl(,\ ‘o) + 

. %(_rx )l 4e 
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€ We first express —2x/l —x?> in the power form, 
—2x(1=x2)12, 

We observe that —2x(1-x2)/2 can be written as 

g0)[g(x)]'72 with g(x) = 1-x2. 

Therefore, by recognition we have: 

I—Z.m/l —x2dx = j-zx(l —x2)1 24y 

- %“ X224 ¢ 

- 2T e 

  

a We rewrite 7 as 3x2(x3+4) 4, 
3= 

(x3+4) 

We observe that 3x2(x3 +4)~* canbe writtenas g'(x)[g(x)]™* 

with g(x) = x3+4. 

Therefore, by recognition we have: 

  

  

203+ A4y = — L 3ay-4+1 4, j3.\ (3+aytds = — LG4y 4+ e 

= —%(.\‘3*’4)73‘*(' 

1 = _4¢ 
3(x3+4)3 

y : 4x3 3 4y-1/2 b First we rewrite as (2-4x3)(2x—x%) 3 
A2x—x* 

  

Then, we observe that (2 —4x3)(2x—x%)"1/2 can be written 

as g(x)[g(x)]"1/2 with g(x) = 2x —x*, 

By recognition we have: 

1 ,l+| 

2x—x* 2 +e¢   J'(z —4x3)(2x - x4) 1 2dx = 
-2 * 1 

2:2x—x*+c 

OGAT) as = [nr + 1)]12 A . 1 
e First we rewrite —/— 

x+1 

We observe that fi[ln (x+1)]"2 can be written as: 

2N i g(0) = In(x+1) 

By recognition we have: 

14 
[In(x+ l)]2 +c   

_ Wi = 1 Jx+l[ln(.r+1)] dx i 
2 

= i@+ P2e 

=2 /lnG+ DP+c 
3 

VR PR M g S 2 O el e - 

‘What happens if the expression is not exactly in the form: 

Ig‘ (x)[g(x)]"dx, but only differs by some multiple? 

That is, what happens when we have Jx(xz +3)4dx or 

J5x(e2 +3)%ax rather than [2x(:2 +3)%an? 

As the expressions only differ by a multiple, we manipulate 

them so that they transform into J.g(x)[g(x)]”dx. For 

example: 

[+ 3ydar = 

3Jre 3y = xz(x2+3)3+c = %(.r2+3)5+c 

R
L
—
 

-
 

(i.e. multiply and divide by 2.) 

[sx02+3)tar 

SJ.x(.\'2 +3)4dx = gJ.Zx(x:' +3)4dx = g x=(x2+3)+¢ 1 
5 

(i.e. take’ 5 outside the integral sign, then multiply and 

divide by 2.) 

= %(.yc2 +3)5+¢



  

These manipulation skills are essential for successfully 

determining indefinite integrals by recognition. 

Exercise E.10.1 

For this set of exercises, use the method of recognition to 

determine the integrals. 

  

NTEGRATION IVIETHOD 

  

   

  

  

  

  

  

  

  

  

  

1L Find the following indefinite integrals. 

10x/5x% + 24 d a I XA/5X X b J.(.):3+4)2 x 

¢ [exti-2% a J'z[r(wzfifidx 

e .[6 xNx2 + ddx f .[ 2x+3 
(2 +3x+1 )3 

2. Find the antiderivatives of the following. 

2 3 ki 
X+ —e X 

a 2xe b T 

c sec?3xetandx d  (2ax + b)e-lax* +bx) 

1 1 cosgx 4 44 e Fsine 2 f 3 At sinzxe = 

3. Find the antiderivatives of the following. 

4 2xsin(x2+1) b isin(A/)—r) 

Jx 

c %cos(Z + l) d sinx./cosx 
X X 

. sin3x f 4sec?3x 
cos3x 1+ tan3x 

4, Find the antiderivatives of the following. 

2 3 

a 4+x2 b £2 40 

c 3 = d ! 
Stxt 25 —x 

5 Find the following indefinite integrals. 

3 S 
d b dx 

% .[ T -[ f1—_x2 

1 1 
c dx d dx 

J. 4 —x2 J‘ [9 —x2 

6. Evaluate: 
4 1 

1/2 31245 7. e* a jx (1+x7"%)dx 1 J- dx 

1 0 e 

3n 
4 n 

3sinx q J 8 

& I+ cosx 4+ J\z 

0 0 

T 
1 2 

e Je‘cos(e~‘)dr f J-A/)_r sinx3/2dx 

. 0 

’_‘ 
3 

g j tanxsecZxdx h j3x-e"dx 

0 -1 

4 

i J.;d;u j J.x«/x2 —9dx 
xInx 

e 3 

Extra questions 

  

  

    

A 

  i 

Integrals from Derivatives 

Derivative of Inverse Trigonometric Functions 

In this section, over an appropriate domain, either expression 

Sin~!(x) or arcsin(x) can be used. Similarly we can use for 

Cos~!(x) and arccos(x) as well as Tan~!(x) and arctan(x) 

. That is, 

Sin‘l(x) = arcsin(x),—-1<x<1, 

Cos~!(x) = arccos(x),—1<x<1, 

Tan—!(x) = arctan(x), —eo <x <oco. 

It is important to keep track of how the domain of some 

functions is not the same as that of their derived function. For 

example, although the function y = arcsin(x) is defined for 

_1 <x< 1 its derived function, 2 is defined for -1 < x < 1. 
i.e. the end points, x = +1 are nold included. 
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Derivative of Sin"'(x) 

By definition, Sin—!(x) is defined for x € [, 1 ]. We start by 
letting y = Sin~!(x),—1 <x<1. 

Then we have that y = Sin~!(x) & x = siny, —g <y< g . 

n__ dy 1 
s'ys;a—" i ——E<V<E 

dx _ . T 
So, 25 = <08y, dx cosy 2 7 2 dy 2 

Note the change in domains! 

Now we express cosy back in terms of x: Using the identity 

cos?y +sinZy = 1 we have: 

cosZy = 1 —sin2y..cosy = +4/l —sinZy = 41 -x2 

So, at this stage, the derivative of Sin~!(x) is given by: 

dy _ 4 ] 
dx 1 —x2 i 

bid 
However, over the interval =5 <V <35 we have that cosy is 2 2 ) 
positive and so we only use the positive square root. 

  —l<x<l1. 

1 —l<x<1, 
N1 —x2 

We then have the result that g{ = 

    

  

Note that we could have arrived 

at the same conclusion about the 

sign of the derivative by looking ., 

at the graph of Sin-!(x) for ¥ St 
xe (-1,1). 

T 
2 

Using the graph of Sin~!'(x) 

for xe (~1,1), we can see that 

over the given interval the gradient anywhere on the curve is 

always positive and so we have to choose the positive square 

root. 

Derivative of y = Sin™! [5), —a<x<a wherea>0 

Using the chain rule for y = Sin ‘({). —a<x<a we set 
a 

u ===y = Sinlu, -1 < u< 1, which then gives: 
a 

dy _dy du 1 1 a 1_ 1 
dx  du dx 12 a 2_2 4a [a2 _x2 

1<t 
a 

ND 2 2 2 52 
Note: /1 -2 = /1,[-1) - fat-xt _ daZ-x® 

a a? a 

1 a 

“A/l—uz - NJa? —x? 
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Derivative of Cos™'(x) 

Starting ~ with  the function principal  cosine 

f(x) = cosx, 0 <x <7 we define the inverse cosine function, 

SHx) as f1(x) = Cos™!(x), -1 <x<1.Letting y = f(x) 

wehave y = Cos~!(x),~1 <x<1 sothatx = cosy,0<y<n 

Differentiating both sides with respect to y we have 

! ) dy 
dx _ —Sl!‘l)’.OSVST[:>—'1 = ——.l—,0<\'<7t 
dy < dx siny’ . 

Note the change in domains. 

Using the trigonometric identity sin’y = | —cos?y we have 

siny = a1 —cos2y = a1 -x2. 

Therefore, @ ] ,—l<y<l1. 
dx £/l =x2 

We now need to determine which sign to choose. Using 

the graph of y = Cos(x),~1 <x< 1 we see that, over this 

domain, the gradient is always negative and so we choose 

JI—x2. 

  

Derivative of Tan™'(x) 

Again, we start with a principal tangent function 

f(x) = tanx, —g<x<g - 

We define the inverse tangent function, f'(x) as 

f(x) = Tan"!(x), o <x <oo. 

Letting v = f'(x) we have y = Tan"!(x),—eo<x<eo s0 
- , L T that x = tany, 5 <r<3. 

Differentiating both sides with respect to y we have 

  dx T n_dy 1 b T 
— = secy, - <y<z-<— = y—=<y<= dy PR T ety 27 2- 

However, tan2y + 1 = sec2y, therefore: 

) 1 T | 
dy _ PP S, —e0 <X < o0 
dy 1 +tan?y 2 ° 2 1+x2



  

  

  

a Let u=§ so that f(x) = arcsin(x) and as 

—1<u<1=-2<x<2. 

3 d du 
By the chain rule: /()= "—arcsin(x).— ()= Zarcsinu) 5 

1 1 
= X— 

1-4% 2 

1 1 
= =X~ 

- f) ’ 
2 

_ 1 

4-x° 

  It follows that: j \[4174} = arcs'm(% )+ e 

b Using the chain rule: 

d 1 ——(arctan[x +2]) = —————, —eo<x+2<e0 dx(arc an[x +2]) 2P <x <eo 

1 
It follows that: J.—zdr:arctan(x+ 2)+c 

1+(r+2) 

c Using the chain rule, 

dr 2 ce (/10,-242) 0 (242, /T0) 
dx /17[_‘,279]2 

It follows that: J‘%fiif = arccos(x2 - 9) +c 
1 9) 

  

  

Two Important Standard Integrals 

The integrals that follow from these derivatives are: 

Differentiating y = a* 

We have already considered the derivative of the natural 

exponential function y = e*. Weextend this to a more general 

form of the exponential function, namely, y = a*,a#0, 1. 

The process requires an algebraic rearrangement of y = a*. 

Taking log (base e) of both sides of the equation, we have 

y=a‘elog,y = log,a* 

So that, log,y = xlog.a 

Next, we differentiate both sides of the equation: 

d -4 dx(loggy) dx(xlogg a) 

Now (this is the tricky bit): 

  Using the fact that a%c(logef(x)) = ?((;)) or ]% x f'(x) and 

since y is a function of x, we can write [;i(logey) = 

That is, we have replaced f(x) with y. 

1.dy 
y odx’ 

This means that we can now replace ;%((Ioge y) = c%((xloge a) 

, with Ldy di(xlogea). 
y dx x 

d g an )y dy _ dx(xlogea) logea..y i logeaadx (log, a)y 

= (log,a) x a* 

i.e' — 
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(@) y= 3 s K ) 

  

a Based on our result, we have that: 

% = 5x(log,2) x 2% = (log,32) X 2% 

It follows that: [log,32x 2" dr=5x2" +¢ 

b Using the result that: 

if v = ak then % = k(log a) x a**, we have that 

  

Y 4(log 3) x 3% = (log 81) x 34 
dx & ¢ 

34.\' 

4x _ It follows that: J3 dy= Tlog.3 +c 

c Letting # = 2x + 1 gives y = 5261 a5y = 5%, 

Using the chain rule we have: 
d_,_v = fl@ = u 

dx  dudx (log,5) 32 

Ldy _ 2x+1 S (2log,5) X5 

= (log,25) x 52¥*1 

52.!' 

10.log,5 
  1t follows that: J‘SZH ar= +c 

Note that from (ZlugFS)XSZ‘*' a number of different 

acceptable answers could have been given. For example, 

(2log,5)x 5271 = (2log,5) x 52¥x 5 = 10(log,5) x 52%* 
e £ € 

We must not forget that we could have determined the 

derivative of f(x) = a* by using a first principles approach. 

; 4 CFR 
That is, /'(x) = lim Sty =fix) lim olis==Y o ; 

h—0 h h—>0 h 

As x is independent of the limit statement, we have: 

ax(ah h 
Py = tim 288 =D o gy i £ =1 

h—0 h h—0 h 
  

h 5 5 2 .oal—1 
All that remains then is to determine lim 

h—0 h 
  

We leave this as an exercise for you. However, a starting point 

is to use a numerical approach, i.e. try different values of 

a (say a = 2, a = 10) and tabulate your result for a range of 

(small) values of h (i.e. make h smaller and smaller). Then 

compare your numerical values to that of log 2 for a =2 and 

log,10 for a =10 and so on. 
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Differentiating y = log x 

As in the last section, we use a simple algebraic manipulation 

to convert an expression for which we do not have a standard 

result (yet!) into one we have met before. In this case we make 

use of the change of base result. 

log x 
i.e. given log x = logi 

e 

  the equation y = log x can then be 

  writtenas y = e x log x. 
e 

Now, fog 4 is @ real constant, and so, we are in fact 
; 5 ¢ : 

differentiating an expression of the form y = & xlog x, 

  where k = ; 
log a 

1 
However if y = kxlog,x then Z—zx = kx 7, meaning that we 

then have: 

  

  a Given that if y = log x then dp . .1 ><l then 
dx loga x 

for y = log,x i.e. a =2 we have that 
dy _ 1 1 i 
dx loge2xx - (logE,Z)x' 

  

b This time we start by letting # = 2x— 1 so that 

v = logo(2x—1) = logqu. 

Then, combining the chain rule with the results above 

(i.e. a = 10) we have: 

  

dy _ dvdu _ [ 1 I) 
Sl = = = -|x2 
dx  dudx logeIOXu - 

2 

~ (log,10)(2x—1)



e — 

c Again we combine the chain rule with the results of 

this section, where in this case, a = 4. 

Let u= tan8x=>% = 8sec28x, then 

= s 
y=logu= du  In4 % u’ 

& _ (L D guect - Bl Therefore, == =3 <o )% 8sec?8x (In@)tantx 

= 8 

i (In4)cos8xsin8x 

8 
I:using cos8 xsin8x = ;—sin 16.\':| - (In2)sin16x 

    

Exercise E.10.2 

1, Find anti-derivatives, with respect to x of these 

functions: 

2 1 

I b h—x2 

  

    

  

  

  

  

    

  

  

4 

‘ d J1- 162 

2 ¢ 1 

¢ x2+4 N2x—x2 

1 
8 b NA—(x+1)2 

) 1 -1 
! (4-x)2+1 J Aax—x2 

6 

k 4x2+9 1 

2. Evaluate: 

1] ! 1 

a Joxz+ldx b -[(1 )4_/}:1‘1'1 

1 1 1 1 
7 dx 

¢ I‘l4x‘+9 d L 27-94° 

1 dv 4 
e J.0 2 Hint: Z(arcsin\/;) 

  

v x.dx 
f J°—T— o Hint: %(arccosxz) 

.dx 
g .,.01 f+x4 Hint: %(arctanxl) 

  i1 —2¢ 
h Ju(l+x2+2x~3e }ir 

Differentiate the following and state the resulting anti- 

derivative 

a y = 4% b y = 3¥ 

c y = 8 d y=3x5% 

e y=Tx6" f y=2x10¢ 

g y= 6x-2 h y:?_}x*[ 

i y=5x73"x 

Find: 

a J.Z"’ dx b J.32" dx 

& J’21,|—4d;r d J'y,r—&dx 

N f 3% 

Evaluate: 

3 3 
a 2 dr b [ 3 a 

0 -1 

3 2x 3 3 

& -[7]3 dx‘ d ‘[722 d" 

e J.:(Zs“ +2x~3)dx 

  A 511 
Find the value of A such that J‘” 2% dy= Slog.2" 

Find the value of B such that lifigfirzs—fl 
ol 4x" 4 

  
C 1 

Find the value of C such that j 
o [ A— 4 

de=Z 
6 
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Partial Fractions 

In Chapter A.6 we met the technique of splitting algebraic 
fractions into simpler expressions known as partial fractions. 

This can be a very useful tool in finding anti-derivatives. 

This is particularly the case when combined with the standard 

form the results from this derivative: 

This result follows from the Chain Rule and leads to the 

standard form: 

232     
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-[x4x 

d 
Observe that: —(x* —4x)=2x—4 so that: dx(x x) % 

J.[ jf__:f ]dr: 1ogt(x2 - 4x)+£ 

We can check this by Chain Rule differentiation: 

= log,(x2 - 4x) 

u=x2—4x:>@:21—4 
dx 

  

  

)'=10gi.(u)=>d—)’=l 
du  u 

Y MW By it 2t 
dr dlr du dv u x'—4x 

  sin(x) 
Itan (x)dr= Jcos i) dx 

_ _J ~sm(x)dx 

cos(x) 

=—log, (cos(x))+c 

  

  

We can now set about using these two techniques to tackle 

some quite complex integrals. 

  

The integrand is not in the form 'top the derivative 

of the bottom'. However, we can split it into partial 

fractions: 

1 1 

x—x-6 (r+2)(x-3) 

A B 
=4 
X2 x=3 

Using techniques developed in Chapter A.6, we now 

find A & B. 

1 _A(x=3)+B(x+2) 

P-x-6  (x+2)(x-3) 

Since the denominators are identical, so are the 

numerators: 

A(x=3)+B(x+2)=1 

Equating coeflicients: 

x"A+B=0..[1] 

x':=34+28=1..[2] 

2.[1]-[2] 5A~—l=>A~~— B—é 

The integral can now be spht into two parts, both of 

which are 'log form': 

jz — 6 x+2 5 

=——logl_(x+2)+§10g‘,(x—3)+f 

1 (X_3]+ == & 
o8, +2 

Remember that partial fractions only 'work' if their 

rules are followed. The first is that the numerator must 

have lower degree than the denominator.



  

If not, polynomial division must occur first and the 

remainder term split. The other rule is that constants 

in the numerator only work for linear factors in the 

denominator. In this case, we do not need to divide 

first, but we must be careful with the choice of 

numerators. 

8x°-22x+8 _ A " Be+C 

(x-1)(24*—6x+1) x—1 2x°—6x+1 

The solution can now proceed: 

A20° =62 +1)+(Br+C)(x—1) 

(x—l)(2x2—6.1'+1) 

8x°—22x+8 

(r=1)(2207 —6x+1) 

It follows that: 

It 

84 =22x+8= A(24° —6x+1)+(Br+C)(x—1) 

=(24+B)x* +(-6A- B+C)x+(A-C) 

Equating coefficients: 

224+ B=8..[1] 

x:—6A—-B+C=-22..[2] 

2"A-C=8.[3] 

[2]+[3]:—54-B=-14..[4] 

[1]+[4):-34=-6=>4=2 

[1}2x2+B8=8=B=4 

[3l2-C=8=C=-6 

The integral can now be split: 

P -22x+ 2 - J- 8x Z’X 8 dx=J. dr+-[ j}x 6 

(x—l)(2x“~6x+1) x—1 Y2x —6x+1 

Both of these are 'log form' and we can proceed straight to 
the answer: 

  

2dx 4x—6 

j:+'[2xlv6x+l 
dy=2log,(x—1)+log, (21z —6x+ 1)+z‘ 

The technique can also be applied to definite integrals 

  

NTEGRATION IVIETHODS 

4 A B 

(F23)z+5) 293 =45 
4= A(x+5)+B(x+3) 

x'5A4+38=4..[1] 

xhA+ B=0..[2] 

[1]-3.[2]24=4=4=2 

[2]:3+B=0=B=-2 

The definite integral can now be calculated: 

    
2 4ddx 2 2dx 2 2dx 

oo o e 
= 2[log,,(x+3)]f - 2[10g‘,(x+5)][2 

=2(log, (5)~log, (4)) - 2(log,(7)~log,(6)) 

:210&[&) 
“N4x7 

15 =2log,[ = o ) 
V(207 430 —34)dx 

b [, (x+5) 

On this occasion, as the numerator is of higher degree 

than the denominator, we must divide first. 

2% —~7 

x+5 | 247 +3x-34 
2% +10x 

-7x—34 

-7x-35 
1 

(207 +3r-34)dr 1 

=[x A7x+log,_()HS)l1 

=1-7+log,6—(1+7+log,4) 

=-14+log (3] = o5 
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Exercise E.10.3 

234 

Find: 

dx 

% J‘(,1’—1)(x+3) 

IL 
b (x-2)(x+4) 

dr 
¢ I(2;r—1)(x+3) 

JL 
d (2x-5)3x+1) 

& 
£ I (Bx—1)(2x+1)(x—4) 

  

dy 

foIes 

v 

ey 
Xy 

I 
J4x-‘—13x3—10x+34 

(x—4)(x+2)(2x-1) 

3 

i e 

Evaluate: 

\ dx 

ox+2 

3 dr 
b (r+2)(2xr-7) 

1 dx 

- 'L (2x+l)(x2—4) 

2 2 +4 

d -[fl(x+2)(21+1) 

_[2 2 +3x+1 

£ o (x+2)(2x+1)(x-3) 

  5 

f Jj4+)r1¢r 

Find the value of A such that J‘:4—i—,/x = 3108"(%) ) 
A4+ x 

Use the equation of a unit circle: x*+ p*=1 to prove 
that the area of the circle is 1. 

Find the area between the curve with equation: 

2 
=——— and thelinesx=1and x=2. K (X+2)(x+3) an mes x and x 

Find the closed area bounded by the line )’=1~§ 

1 
and the curve y=——. 

x+1 

Find the value of B such that: 

U de 1 2 
I (zx~1)(x+3):?l°g“[fi) 

Find, correct to 4 significant figures, the value of: 

J-l 3.5in(x) & 
0 cos(x)+2



  

Substitution Rule 

In the previous section, we considered integrals that required 

the integrand to be of a particular form in order to carry out 

the antidifferentiation process. 

For example, the integral IZXAII +x2dy is of the form 

J/v‘(x)[h(x)]”dx and so we could proceed by using the result: 

[retherds = —ihor e, 

Next consider the integral J.x AJx = 1dx . This is not in the form 

h'(x)[h(x)]"dx and so we cannot rely on the recognition 

approach we have used so far. To determine such an integral 

we need to use a formal approach. 

Indefinite integrals that require the use of the general power 

rule can also be determined by making use of a method 
known as the substitution rule (or change of variable 

rule). The name of the rule is indicative of the process itself. 

We introduce a new variable, u (say), and substitute it for 

an appropriate part (or the whole) of the integrand. An 

important feature of this method is that it will enable us to 

find the integral of expressions that cannot be determined by 

the use of the general power rule. 

We illustrate this process using a number of examples 

(remembering that the success of this method is in making 

the appropriate substitution). The basic steps in integration 

by substitution can be summarized as follows: 

1. Define u (i.e. let u be a function of the variable which 

is part of the integrand). 

2. Convert the integrand from an expression in the 

original variable to an expression in u (this means that 

you also need to convert the ‘dx’ term to a ‘du’ term ~ 

if the original variable is x). 

3, Integrate and then rewrite the answer in terms of x (by 

substituting back for u). 

NB: This is only a guide, you may very well skip steps or use a 

slightly different approach. 

  

a Although this integral can be evaluated by making 

use of the general power rule, we use the substitution 

method to illustrate the process: 

In this case we let u = 2x+ 1 = g _ 2.0dx = l(/u. 
dx 2 

Having chosen u, we have also obtained an expression for dx 

and we are now in a position to carry out the substitution for 

the integrand: 

J(2x +1)4dx = Iu“ X (ldu) = lJu“du =lelisee 
2 2 275 

1 =—uS+ IOM e 

Substituting back, we obtain, in terms of x: = %(Zx +1)5+¢ 

b This time, we let « = x>+ 1. Note the difference 
between this substitution and the one used in part a. 

We are making a substitution for a non-linear term. 

Now, u = x2+1 :@ = 2x .'.la'u = xdx. 
dx 2 

Although there is an x attached to the dx term, hopefully, 

when we carry out the substitution, everything will fall into 

place. 

Now, J'zx(xl +1)3dx = _[2()-2 +1)3xdx 

(We have moved the x next to the dx.) 

= -[2113 X %du (substituting xdx for Yadu.) 

1 
=—u'+c 

4 

:i(x2+1)4+£ 

NB: A second (alternate) method is to obtain an 

expression for dx in terms of one or both variables. Make 

the substitution and then simplify. Although there is some 

dispute as to the ‘validity of this method, in essence it is the 

same. We illustrate this next. 
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du 1 
c Letu—x—4:d¥—3 32 

the substitution for u and dx, we have: 

—du = ljlf'/zalu (Notice the +* Ji= - Jmamt -5 
terms cancel!) 

  

2,172 =zu'cre 
3 

:%A/ —4+c 

Letting v = v—lfi% = 1. 

This then gives J.x ANx—1ldx = J.xfidu . 

“du = dx. 

‘We seem to have come at an impasse. After carrying out the 

substitution we are left with two variables, x and u, and we 

need to integrate with respect to . This is a type of integrand 

where not only do we substitute for the x - 1 term, but we 

must also substitute for the x term that has remained as part 

of the integrand, from u = x — 1 we have x = u + 1. 

Therefore: 

xax—1dx = |xsudu = (u+ D 2du I Jrdide= | 
‘[(113/2 +ul/2)du I 

2 2 o 2SR ,,3/z+ 

=2 /= l)5+%~/(,\'— 13 +e 
5 

    

Integrating both sides of g':- =   with respect to x, we 
1 

Jx+2 

  

  

have: 

dy 1 
dx d [ = |z 

Letw = v+2:>d" = lodu = dx. 
dx 

1 
So, dy = | —=du = |u"2du = 2fi+c 

J- x+2 J.JflL I 

Therefore, we have y = f(x) = 2Jx+2+¢ . 

Now, f(2) =3=3 =2J4+tcsce=-1. 

Therefore, f{x) = 2J/x+2-1. 

  

a Letw = Prdmd = 
dx 

3820 L = dy, 
3x2 

Substituting, we have: 

jr e Ty = Jl)\E'" 5du = ;Je"c/u 

elite 

e
 
i
 

e td o 

b Let u = e-":sfl = e¥odx = ln’u. 
dx ex 

Substituting, we have: 

) . . 1 
‘[e" cos(e¥)dy = J.e“cnsux—_dzl = J.cosudu 

ex 

= sinu+¢ 

I sin(e¥) +¢



    
c Letu=x2+4:fl=2x.'.dx= La'u, 

dx 2x 

Substituting, we have: 

[aat = [begn = 3faan =3 | | 5 = + o   

=§Ln(x2+4)+c 
2 

_ du _ _ d Letu =x+1=>= = l.dx = du. 
dx 

Substituting, we have [x2Jx+ ldv = [x2udu. Then, as 
there is still an x term in'the integrand, we will need to make 

an extra substitution. From v = x+1 wehave x = u 1. 

Therefore, 

jx2 udu = J(u— l)zfidzl = I(uZ—ZLM Du'2du 

J(us/z — 20312 4 112y gy 

4 .2 =22 45,280, 
7 3 

. %(,H |)7/2,‘5_‘(x+ ,)5/2+§(x+ 1324 ¢ 

    
1 - du _ 3in3yede = —— L a Let u cos3x=>dx 3sin3x..dx 35in3xdu' 

Substituting, we have: 

JsinS.\"cosZSxdx = J.*uzx— —l——du 

= —;juzdu 

11, L ls,. 3 3U c Il 
Il = (—;cos33x e 

NTEGRATION IVIETHODS 

b Letu=5+ cost:{fl = _2sind sdk = ——— i, 
dx 2sin2x 

  

Substituting, we have 
i in2 sin2x d\’:jfi“"xx— 1 

5+ cos2x 2% 2xdu 

11 
= —|-d 

2Ju " 

=4 Inu+e 2 

Il —%ln(S +cos2x) + ¢ 

1 
c Let u = arctanx = du Ir T =widhx = (1 +x2)du . 

9 X 

  

Substituting, we have: 

arctanx , u 5 - 
-[.\'2+ ! dx = J.x2+ 7 X (1+x%)du = J.udu     

1 
=zulte 

2 

= %(arctanx)z +c 

  

When using the substitution method to evaluate a definite 

integral, it is generally more efficient to transform the 

terminals (limits) of the integral as well as the integrand. This 

process is illustrated by the following examples. 

[
 

1 

X a This is solved using the substitution = x2 == = 2x 

Y 

The integrand is transformed to: 

2, [l [ 
J.w‘ dx = J.,—’(’”du = Ee‘ + ¢ 

Having established that the substitution will work, we can 

now use it to transform the terminals. 

The lower terminal is x = | = » = 12 = 1 and the upper 

terminalis x = 2= u = 22 = 4. 
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| 2 4 1 4 1 
Thus: J:xe“‘dx = J.] ie“du = E[e“]l = §(e4_e) 

‘ b Useu:2x+3.d—”:2and: 
dx 

| 

‘ x=lu=5x=3>2u-= 9 

7 112 37° 
f~/2x+3a’x =J ~u'2dy = —[—11}"2] ; 2 213%  Ig 5% 

- 5(93@ 5312 

(27-545) 1 
3 

. = 2sing, & = c Let x = 2sin6, 26 2cos0. 

The terminals transform to: 

x=0=0=2sin0=0 =0 

x=2=2=2sin0=0 = 

e
 

S
 

4~ 4sin”0 x 2c0s0d0 ;fi&:?m:J 

: IZZVl—sinZGXZCOSGdG 
0 

T 

2 2 
2‘[ 2cos 0dO 

0 

(
1
=
 

T 

2j2(1 + c0s20)d0 
0 

T 
2 1. Yoo 2[6 2511129}0 

=T 

Exercise E.10.4 

L Find the following, using the given u substitution. 

a J2xm;i\', @ = 324 

b JB.\'Zmdx,u:x3+l 

€ jZ.r:‘ 4—xtdx, u = 4—x* 

d 322 de,u=x3+1   
X3+ 
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X - 2 
der, u=3x>+9 

f J.er": e, u=x2+4 

2z+4 
—_—dz =z24+4z— g J:2+4‘_75 su=z+4z-5 

Using the substitution method, find: 

a J.x A2x—1dx b '[.\'ZA/ 1 —xdx 

c J-(x+ Dax—1dx d Jsecz.ve sanxdy 

Using an appropriate substitution, evaluate the 

following, giving exact values. 
1 1 

    2x 2x2 
a ——dx b -[ dx 

J.xl +1 x4l 
=5 0 

12 T 
2x+1 2 cosx 

¢ J.x2+’\,_2d" 4 J‘O 1+sinxd‘ 

10 

Using an appropriate substitution, evaluate the 

following, giving exact values. 

T 

a J}x»\/xzi'SdX b r3xsin(4x2+n)dx 
1 0 

1 . .[ 1 

c (3x +2)%dx d ——=dx I, 

Using an appropriate substitution, find the following, 

giving exact values where required. 

T T 
2 . 3 3 5 

a J. sin”x cosxdx b J. sinxsec-xdx 
T 

! 6 

bis T 

dx   3 . 3 sin2x 
c I cos?xsin2xdx d J. 

0 0 A/COS X 

  

Using an appropriate substitution, find the following, 

giving exact values where required. 

= 

a J Xa/x+2dx



  

b ‘[:xmdx 

T Find the following indefinite integrals. 

1 L e 
° .[,\-2+5x+|odx b v[xz—x+1 

1 3 
—_—dx d ———dx 

: ‘[A/l +4x—x2 ‘[48—2.\'—.'«'2 

    
2 

8. Given that 72_—"5 A B finda 
and B. 2+ 1)(x2+4) x2+1 x2+4 

1 
2—x? 1 

Hence show that '[7—751\‘ = arctan| 3 |. 
(x2+1)(x2+4) 3 

0 

  9. F‘maljfi7l i, k> 0. 
ox=+1 

Evaluate this definite integral for: 

i k= 

Si
l-
 

    Find Iime-A 7' dx.Hence,find.[ 71 dx . 
kool gx=+ 1 | 

1 

Jx+1 
  

1 1 

10.  Find J.JI = ldx . Hence evaluate J‘ dx . 
0 

4 
11.  If z = cis®, use the expansion of [: - %) to show 

that 8sin*@ = cos460 —4cos26 +3. - 

Hence, using the substitution x = ksin2@, evaluate: 

fx X dv,0<0<m. 
o Nk—x 

Extra questions 

  

  

Integration by Parts 

The basics 

Consider the indefinite integral J.x cosxdx . 

Applying any of the techniques we have been using so far will 

not help us determine the integral. Let us start the process by 

first finding the derivative of xsinx: 

%(xsim—) = (%’(x)sinx i .\'%_( sinx) (using product rule) 

d—i(xsinx) = sinx +xcosx 

We observe that the term xcosx has now appeared on the 

R.H.S. so we can write 

d. . 4 
XCOSX = d—(xsmx) — sinx 

X 

| .‘.J.xcosxdx = I[a% (xsinx) — sinxildr 

xsinx + cosx + ¢ 

Such a process requires considerable foresight. However, 

this integrand falls into a category of integrands that can be 

antidifferentiated via a technique known as integration by 

parts. The method is identical to that which we have just used 

in determining |xcosxdx. 

We develop a general expression for integrands that involve a 

product of two functions. 

Step 1: Consider the product u(x)v(x). 

Step 2: Using the product rule for differentiation we have: 

%(M(X)v(x}) = u(a‘)%+ V(x)%. 

Step 3: Integrating both sides with respect to x gives: 

d. 
u(x)v(x) = J.u(x)d—:dx + Jtr(x)z—‘;dv 

i 
Step 4: Rearranging, to obtain J‘M(.\')j\‘_d\’ , we have: 

In the previous case, we would set, #(x) = x and z% = Ccosx 

and the result would then follow through. ) 
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The success of this technique is dependent on your ability to 

identify the ‘correct’ #(x) and v(x). 

For example, had we used u(x) = cosx and % = X, 

we would have the expression 

_[x cosxdx = %xz COSX — J%.rz(—sinx)dx 

- which is not helpful. 

We now consider some examples to highlight the process 

involved. 

  

a J.x cosxdyx . 

Applying the parts formula with u(x) = x and 4 cosx )it 
. . dx 

follows that v(x) = sinx gives: 

  

  

u(x) Find du 
o i 

7K I\ 
  

( v(x) Fing dv ] 
—— dx 

    
  
N " 

sinx cos.\::§ 

J.u(.r)z%d.\' = ulx)vl\') - J‘v(.r) %dx 

J- xcosxdx = xXsinx — J.sinxx ldx 

= xsinx — (—cosx) + ¢ 

= xsinx + cosx +¢ 

You should check that this is correct by differentiating the 

answer. 

Many people remember the ‘parts formula’ by thinking of 

the question as consisting of two parts each of which are 

functions of the independent variable. One of these functions 
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is to be integrated and the other differentiated. It pays to select 

a function that becomes simpler in derivative form to be the 

‘part’ that is differentiated. Often, though not always, this will 

be the polynomial part. 

b I’:—: e2¥dx . 

In this case we choose the function to be differentiated 

as u(x) = %‘ and the function to be integrated as 

% =e2X = p(x) = Zlez-‘ 

T 
u(x) Eilhd du 

  

x 1 
/ 3 3 \ 

L) Find  dy | 
J dx 

\132:( e2x / 
2         

ju(x)Z—:d\f = u(x)v(x) - J.v(x) Z—:dx 

Pt 

Exercise E.10.5 

1. Integrate the following expressions with respect to x. 

a xsinx b xcosg 

X 
e 2xsinz d xe—x 

2 

2. Use integration by parts to antidifferentiate: 

a xx+1 b xx =2 

3. Find: 

2 J.Cos"xdx b jTan"xdx



  

Extra questions 

NTEGRATION IVIETHODS 

Find: Repeated Integration by Parts 

a JxC 05~ xdx o 

'
w
fi
 

= — = =
 = & In Exercise E.10.5, Question 7 required the repeated use of 

integration by parts. There will be occasions on which you 

will need to use the ‘parts’ formula more than once to evaluate 

an integral as in the following examples. 

Find: 
n 

a J.4 xsin2xdx b 
0 

(e—1) 
C I xIn(x+ 1)drd 

1 

n 

e J.: xcos2xdx f 

8 a J.xz cos2xdx = x2x %sin 2x— J.Zx X %siandx 

  

X 

1.5 " 
! = —x2sin2x Repeated use of 

Find I x2Tan'xdx 2 i‘pans' formula. 

0 1.5 
= =x2sin2x— 

2 _ 

1. 5.5 1 | 2 + = + 2X sin2x Z.YCOSZ)C sin2x +¢ 

[ using u = x2 2= cost] 

  

Show that C%[ln(secx + tanx)] = secx. 

g b jezxsin]—(dx = e2¥x -3cost - 
Hence find j secixdy 3 3 

0 
= —3e2rcost - 

3 

2 X ‘i X 2X i X 
=3~ cos§ + 1862 sm§—36jz--‘sm “dx 

Find: 3 

a J‘ cos(Inx)dx 

The required integral appears on both sides of this equation, 

which rearranges to: 

b J.sin(lnx)a’x 

37J.e2"'sin£dx = —3¢2%cosl + 18e2¥sint 
3 3 3 

c J‘x%/l —x2 .'.ch-"sin‘gdx —3%03-"00% + %ez-"sing +e 
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| 
| 

Exercise E.10.6 

L Find the following integrals (not all are best evaluated 

using the parts formula). 

a J.tze‘dx 

c _[x31n(2x)dx 

e J..\'zcos(Sx)dr 

Aok g J-4.\ 51n2dx 

i J.(ln(3x))zdr 

k Ie’”cosidx 

m -[x3 In(ax)dx 

  

  

J‘ 3x2dx 
o 

Nx2-9 

2 %2 

1 -[ x2+ 4dx 

2. Evaluate the following. 
n 

2 2 
a I xcos“xdx 

0 

n 

e¥cosxdx o 

wi
A 

W 

2n 

D ax 
e e“*coshxdx 

T 

b 
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- 
-
 

o
 

f 

J‘3x3 cos(2x)dx 

je-‘ sin(2x)dx 

J.e’z-‘ cos(2x)dx 

J.lln.\'dr 
x 

J.cos.vsin(Zx)dx 

Ixz A/.mdx 

5 

_[ v 
4 x2 

  

  

X 
dx 

J‘x2+4 

3
1
 

J xsinxcosxdx 

o 

In2 

J. x2edx 
0 

J’] (Inx)2dx 

Volumes of Revolution 

A solid of revolution is formed by revolving a plane region 

about a line - called the axis of revolution. In this section we 

will only be using the x-axis or the y-axis. 

Axis of revolution    
   Plane region 

Cone 

For example, in the diagram above, if we revolve the triangular 

plane region about the vertical axis as shown, we obtain a 

cone. 

It is important to realize that depending on the axis of 

revolution, we can obtain very different shapes. For example, 

if a region bounded by the curve » = x2. x > 0 is rotated about 

the x- and y- axes, two distinct solid shapes are formed: 

  

Rotation about 

the x-axis 

    

Rotation about 

the y-axis 

When the plane region (enclosed by the curve and the x-axis) 

is rotated about the x-axis, the solid object produced is rather 

like the bell of a trumpet (with a very narrow mouth piece!) 

or a Malay hat on its side. However, when the plane region 

(enclosed by the curve and the y-axis) is rotated about the 

y-axis, then the solid produced is like a bowl. 

Using the same approach as that used when finding the area 

of a region enclosed by a curve, the x-axis and the lines x = a 

and x = b we have:



radius = r = f{x) 
Typical disc” 

3V =mr?xdx 
But, r = fix) 

A SOV =m[fix)]28x 

Width = 8x 

Then, the volume, V units’, of such a solid can be cut up into 

a large number of slices (i.e. discs) each having a width dx 

and radius f(x,). The volume produced is then the sum of the 

volumes of these discs, i.e. 

=n-l — 
V= Z‘ lt[f(x,)] dx where 51:7 

So,as #—»0,0x—0 and so, 

. =n-1 b 5 

V= iun Y x[f(x,)}zb'x = J.:n'[f(x)] dx 
=0 

‘Therefore, we have: 

The volume, V units’, of a solid of revolution is given by: 

L, when a plane region enclosed by the curve y = f(x) 

and the lines x = a and x = b is revolved about the 

Xx-axis. 
x=b b 

V=mn J. [A(x)]2dx |:or V= njyzdx:| 

x=a a 

2. when a plane region enclosed by the curve y = f(x) 

and the lines y = eand y = fis revolved about the y-axis. 

»=r ¥ 

v=r [ 1Ford {or V= rrszd}} 
y=e e 

    

The curve has a restricted domain and is rotated about the 

Xx-axis, so, the solid formed has a volume given by: 
5. 

V= nf(fl/xfl)ldx - nJ' (x—1)dx 
I 1 

I a 
—
—
 

[
 | W | 

—
 

[
T
 

| 

s 
L —
 

= 8n 

Therefore, the volume generated is 87 units. 

If the curve is rotated about the y-axis, the solid formed looks 

like this: 

  

The volume can now be found using the second formula. It 

is important to realize that the integral limits are in terms of 

the y variable and so are 0 and 2. Also, x must be made the 

subject of the rule for the curve: 

y=Ax-1=2yt=x-1=2x=3y2+1 

When x = 1, y= 0 and when x = 5, y = 2, entering these values 

into the formula gives: 
2 2 

V= 7\:.[‘(_\12 +1)2dy = nf (A +292+ Ddy= 
0 0 

,5 3 2 
n[)_‘ + 7 +.v] 

5 3 0 

5 
= n(z; i 2—(23) +2) 

5 3 

~ 3l ]3|57'C 

i.e. required volume is 13% T units’ 
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We start by drawing a diagram of this situation. It is a bead. 

  

Next we determine the points of intersection. 

N25—x2=3 Setting f(x) = g(x) we have 

    

225-x2=9 

ox2=16 

~x =14 

The solid formed is hollow inside, i.e. from -3 < y < 3. 

Next, we find the difference between the two volumes 

generated (a little bit like finding the area between two 

curves): 
4 4 

V= Vo~ Ve = o )P~ [ g0 P 
4 "4 4 

= 1 [ (0P - L)) 
4 

4 

= 21‘|:J‘(|_/‘(.\')|z - Ig(,\')]z)d\' (by symmetry) 

0 

4 

= 2n_[([A/25 2P [31)dx 
0 

4 

= 21:_[( 16— x2)dx 
0 

:71{161' 1\'3}4 
- T3y 

256 
3" 
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g ¥ .. 256 frud 
i.e. required volume is T units®. = 

3 
  

Exercise E.10.7 

Finding volumes of revolution is an application of definite 

integration. Your only restriction will be the limitations on 

your ability to find integrals. 

In the following exercise, you will need to draw on all the 

techniques you have learned in the preceding sections. 

* Unless stated otherwise, all answers should be given as 

an exact value. 

1 The part of the line y = x + 1 between x=0and x=3 

is rotated about the x-axis. Find the volume of this 

solid of revolution. 

2 A curve is defined by v = % xe [1,5]. If this curve 
X 

is rotated about the x-axis, find the volume of the solid 

of revolution formed. 

1 
3. The curve y = d between the x-values 3 and 1 is 

X 3 

rotated about the y-axis. Find the volume of the solid 

of revolution formed in this way. 

4. Find the volume of the solid of revolution formed by 

rotating the part of the curve y = ¢ between x = 1 

and x = 5 about the x-axis. 

5. A solid is formed by rotating the curve 

y=siny,xe [0,2n] about the x-axis. Find the 

volume of this solid. 

6. The part of the curve y = ]T\ between the x-values 

2 and 3 is rotated about the x-axis. Find the volume of 

this solid.



10. 

1L, 

12; 

13. 

The part of the line y = )%1 between x =5and x=7 

is rotated about the y-axis. Find the volume of the 

solid of revolution formed in this way. 

The part of the curve y = l—i; between the x-values 

0 and 2 is rotated about the x-axis. Find the volume of 

the solid formed in this way. 

Find the equation of the straight line that passes 

through the origin and through the point (hr). 

Hence use calculus to prove that the volume of a right 

circular cone with base radius r and height / is given 

by ¥ = %m‘lh. 

Find the equation of a circle of radius r. Use calculus to 

prove that the volume of a sphere is given by the 

formula V' = ng. 

The diagram shows 

a shape known as a 

frustum. Use calculus h 

to prove that its volume 

is given by the formula 

v =28, +B,+ [BB,) where B, and B, are the 

areas of the circular top and base respectively. 

The part of the curve f(x) = sin% between x = 0 and 

x = 5 is rotated about the x-axis. Find the volume of 

this solid of revolution. 

The part of the curve f(x) = x2—x+2 between x =1 

and x = 2 is rotated about the x-axis. Find the volume 

of this solid of revolution. 

14, 

15. 

16. 

17. 

18. 

19. 

NTEGRATION IVIETHODS 

a Find the volume generated by the region between 

the y-axis and that part of the parabola y = x? 

from x = 1 to x = 3 when it is rotated about the 

y-axis. 

b Find the volume generated by the region 

between the x-axis and that part of the parabola 

y = x2 from x = 1 to x = 3 when it is rotated 

about the x-axis. 

Find the volume of the solid of revolution that is 

formed by rotating the region bounded by the curves 

y=4Jxandy = Jx3 about: 

a the y-axis 

b the x-axis. 

Find the volume of the solid of revolution that is 

formed when the region bounded by the curve with 

equation y = 4—x2 and theline y = 1 is rotated about: 

a the y-axis 

b the x-axis. 

Find the volume of the solid generated by rotating the 

region bounded by the curves y> = x* and »? = 2 -x 

about the x-axis. 

The volume of the solid formed when the region 

bounded by the curve y = e*—k, the x-axis and the 

line x = In3 is rotated about the x-axis is 7In3 units’. 

Find k. 

Find the volume of the solid of revolution formed by 
rotating the region bounded by the axes and the curve 

v = JBasinx +acosx, 0<x<2m, a > 0 about the 

x-axis. 
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P e 
20.  Ifthe curve of the function f(8) = sink8,k>0,0>0 

is rotated about the © -axis, a string of sausages is 

made. Find k such that the volume of each sausage is 

T units3 . 

2l. a On the same set of axes, sketch the curves 

y = ax? and: 

5 
X“ 

vy =1-— where a>0. 
a 

b Find the volume of the solid of revolution 

formed when the region enclosed by the curves 

in part a is: 

i rotated about the y-axis 

ii rotated about the x-axis. 

22, On the same set of axes sketch the two sets 

of  points  {(xy):(x=2)2+)y2<4} and 
‘ ) s (x—a)?+y?<4,ae 12.6[}. 

“ The intersection of these two sets is rotated about the 

i x-axis to generate a solid. Find a if the volume of this 

solid is T units’. Give your answer to three decimal 

“ places. 

| A donut is formed by rotating the curve 

| {ay):(x—a)?+y2 =1 la|> 1} about the y-axis. 
Find a if the volume of the donut is 1007 units®. 

Extra questions 

Answers 
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Difiérentia] equations deal with situations in which 

we have information about the rate of change of the 

variables concerned. This is a wide range of situations and we 

will look at a few examples to begin with. 

Example E.11.1 

Newton's Law of Cooling states that the rate at which 

a hot body cools is proportional to the difference in 

temperature between the body and the temperature of the 

surroundings. 

Write a Differential Equation that represents this. 

  

As always, defining variables is a good place to start: 

Let: t = time after the start of the measurements 

M = temperature of the body at time ¢. 

A = ambient temperature (surroundings). 

Working from the data in the question: 

Newton's Law of Cooling states that the rate at which a hot 

body cools: 

( amM ] 

ar ) 
  

is proportional to: o 

the difference in temperature between the body and the 

temperature of the surroundings: 

(M-A4)   

This leads to the statement of proportionality: 

  

  

M DM (M- ) 
dr 

and the equation: 

v M _ (- 4) 
dt 

k is the constant of proportionality. 

Example E.11.2 

Afunction p= f(x) issuch that its graph passes through 

the origin. 

The gradient of the graph at the point (x,y) is 2x —4. 

Write a Differential Equation that represents this. 

  

. dy 
The statement about gradient becomes: 7: 2x—4 

ax 

The extra data: x = 0, y = 0 is sometimes known as an initial 

condition. 
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Defining variables:: 

Let: t = time after the start of the measurements 

H = depth at time . 

Working from the data in the question: 

Water leaks out - the rate of change of depth with time is 

negative. 

dfla}{ :>d£=kH 
dar dat 

1f you are wondering why we have not used 'd' for depth, it is 

to avoid the utterly confusing 'dd' in the derivative. 

In Example E.11.1 we may seem to have made an eccentric 

choice of 'M' rather than 'T" for temperature. This is because 

we have already used 't' for time. Again, we are trying to avoid 

confusion. 

Euler's Method 

There are many ways of solving differential equations. Euler's 

Method is a numerical method that depends on using the first 

principles definition of the derivative: 

gy dlim f(x+h)- f(x) 
I e % 

A diagram shows this: 
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Using the slope of the red line: 

) +h)— Pyl /3 /(x) 

it is possible to infer that: 

Sfath)=hx f/(x)+ f(x) 

This is the basis for Euler's Method. We will illustrate this by 

returning to Example E.11.1. 

  

The simplest answer to this question is illustrated in this 

diagram: 

  

At the start, the tea is cooling at a rate: {TM =—02(M -20) 
't 

=-0.2(80—20) 

=-12 "/min 

This means that, over the first minute, the tea cools by 12” and 

so will now be 80 - 12 = 68"C. 

The approximation here is, however, quite large (the green 

curve and the red tangent differ in a significant way. 

So what can be done to make the approximation better? 

As is often the case with calculus, the answer is: take shorter 

intervals. In this case, we will divide the minute into 10 

intervals (each of 6 seconds).



In the first tenth of a minute, the rate of cooling is as before 

12 “min-'. However, this lasts for a tenth of a minute and so 

the cooling is 1.2° and the new temperature is 78.8°C. 

When we come to the next time interval, we have a new rate 

of cooling because the tea is at a reduced temperature. 

fl=—0‘2(M—20) 
dt 

=-0.2(78.8-20) 

=-11.76 */min 

In the second interval, the tea will cool 0.1x11.76 = 1.176". 

This means that after 0.2 seconds, the tea has cooled to: 

78.8-1.176 =77.624 °C 

For the third time interval, we have a new cooling rate: 

am 
=-0.2(M -20) 

ar 

=-0.2(7.624-20) 

=-115248 "/min 

The actual cooling in the third interval is 1.15248" and the 

new temperature is 77.624 — 1.15248 = 76.47152°. 

As this is an approximation, we should not be quoting this 

level of accuracy. If we continue the process for the ten time 

intervals, the result (to 3 dec pl) are: 

-12.000 80.000 

-11.760 78.800 

-11.525 77.624 

-11.294 76.472 

-11.068 75.342 

-10.847 74.235 

-10.630 73.151 

-10.418 72.088 

-10.209 71.046 

-10.005 70.025 

-9.805 69.024 

  

The improved prediction is 69.0°C. This is not the same as the 

single interval result obtained earlier of 68°C. 

The 'improved’ result is larger than the original. This should 

be as expected since, as the tea cools, the rate of cooling 

decreases. The more we take this into account, the higher the 

final temperature will be. 

With twice as many intervals the predicted temperature is 

69.074°C. 

DIFFERENTIATIAL-EQUATIONS 

  

This comparatively small alteration in the predicted 

temperature suggests that we already have an answer good 

enough to satisfy the requirements of the question. 

Graphically, there are ten interval solution 'leapfrogs’ down 

the curve, and that is why we have an improved answer. 

  

1t 

The technique of repeating the calculation with narrower 

intervals in order to assess the accuracy of the answer is a 

strength of Euler's method. Not that it gives an exact measure 
of accuracy (such as an interval in which the answer must lie), 

but it is better than nothing. 

When using numerical methods to solve practical problems, 

there is almost always a level of accuracy required. Knowing 

for certain that this has been achieved is an important 

criterion when it comes to choosing a method. 

  

At x=2,~=xy=2X3=6 

SI
S 

     

      

    

Not drawn to scale 
' 

  

' 

' 

| 
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T 

i 
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) 
' 
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Moving on to the second interval and starting at the point 

(2.1,3.6). 

Y =21,~4=xy=21%x36=756 ¥=21=-=y 

  

x 
This takes us to the point (2.2,3.6+0.756) = (2.2,4.356). 

Proceeding to the next interval. 

x= 2.2,57,{‘2‘,}i =xy=22X4356=95832 

  

This takes us to the point (2.3,4.356+0.95832) = (2.3,5.31432). 

Proceeding to the last interval. 

ay e o 
x= 2.3,; =ay=23%531432=12222936 which gives the 

solution point as: 

(2.3,5.31432+1.2222936) = (2.4,6.5366136). 

This is too large a level of accuracy, but by how much? You 

may be suspecting that the quite large gradients in this 

example will lead to larger errors in the y values than were 

evident in the previous example. 

If we take twice as many intervals, the predicted value of 

y(2.4) becomes 6.8508. 

You mightlike to investigate how many intervals are necessary 

to get an answer correct to 1 decimal place. It is quite large! 
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The first stage begins at the point (1,4). 

If we use a single interval, the estimate for p(1.5) is: 

p()=—+1+1=-1414 

The increment in y is 0.5 x —1.414 = -0.707 so the estimate for 

p(1.5) is: 4 -0.707 = 3.293. 

But how accurate is this? 

If we use intervals of 0.1, the results are: 

  

  

  

  

          

1 -1.414 4.00000 

1.1 -1.449 3.85858 

1.2 -1.483 3.71366 

1.3 -1.517 3.56534 

1.4 -1.549 3.41368 

1.5 -1.581 3.25876 
  

This gives the estimate p(1.5) = 3.25876 

Since we are rounding to 1 decimal place, our current answer 

is very close the cutoff between rounding up to 3.3 and down 

to 3.2. A further refinement is indicated. 

1 -1.414 

1.05 -1.432 

1l -1.449 

1.15 -1.466 

1.2 -1.483 

4.00000 

3.92929 

3.85770 

3.78524 

3.71193 

3.63777 

3.56277 

3.48694 

3.41029 

3.33283 

3.25457 

1.25 -1.500 

1.3 -1.517 

1.35 -1.533 

1.4 -1.549 

1.45 -1.565 

1.5 -1.581 

This confirms that p(1.5) = 3.3 to 1 dec. pl.



DIFFERENTIATIAL EQUATIONS 

  

  

  

  

  

  

  

  

  

          

Exercise E.11.1 7 In an experiment to determine the effectiveness (E) of 
an enzyme as it varies with pH (H), the values of E'(H) 

1, Estimate the value of y when x = 2 given that the curve were measured: 
passes through the origin and: 

E(H) 
dl =2x+1 6 0.220 - 5 i 

6.2 0.210 
Use Euler's Method and interval sizes of 0.2. 64 0.140 

6.6 0.110 

6.8 0.050 

2. Use Euler's Method with five intervals to estimate f{2) 7 -0.010 

if f{1) = 3 and: 7.2 -0.060 
, 1 7.4 -0.991 

S(x)= Sl 
& Use Euler's Method to estimate E(7.2) given that 

E(6) = 3. 

3. Use Euler's Method with five intervals to estimate 
f1.5)if (1) = -1 and: 

f(x)=—x*+1. 
Extra questions 

  

  

4. Use Euler's Method with five intervals to estimate the 

value of y when x = 2 if the curve passes through (1,1) 

and: 
& Analytic Solutions 
—Z/fl}/ 

dx Separation of Variables 

Most analytic methods depend on rearrangements followed 
5: Water is leaking from a tank such that the depth D at by integration. The exact meaning of rearrangement' depends 

time ¢ deceases at a rate given by: on the actual form of the original equation. 

D'(t):—\/z ,D(0)=5. Also, most rearrangements allow us to use expressions such 
¥ as 'dx' as if they can exist on their own. We have already 

Use Euler's Method with five intervals to estimate the had some discussion on this when we were considering 
depth at time 1. differentiation from first principles and pointed out that the 

derivative is a ratio of two infinitesimally small quantities. 

However, the Leibniz Notation is very useful and does help 

with these calculations. 
6. Using Euler’s method with a step size of 0.2 calculate 

an approximate value of y when when x = 1 for the 

differential equation: 

Y _x-y given that the curve passes through the 
dx x+y 

point (0, 1). 

  

This is an example of an equation which can be rearranged so 

that all the x terms are on one side and all the y terms are on 
the other. 
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Both sides can now be integrated with respect to the separate 

variables. 

Jxxdx:.[)/xafi/ 

2 
- Y   

  

—+6= +£; 
2 2 " 

xt 2 

= 
2 2 

)/2 =4t #iEy 

A word on the subject of the constants of integration. We 

have used four different ones in the above argument. This is 

not strictly necessary and mostly we would only use one at 

the end of the calculation. 

Next, we use the extra condition »(1)=3 to determine the 

constant: 

}/2:XZ+[4 

3¥=1"+¢, 

c,=9-1 

=8 

This gives the solution: y*=x"+8. 

  

As we observed when solving the previous example, the 

Leibniz Notation is the most useful in these cases. 

Y(x)=e"(2x+1) 

Py _ 
dx 

Next, we try to separate the variables: 

e’ (2x+1) 

dy=e’ (2x+1)dx 

L p=(r+1)ax 
& 

e'dy=2x+1)dx 

That achieved, we can integrate both sides: 

Je "dy= J(2x+1)ziv 

e’ =x"+x+c 

We have used only one constant of integration. 

Next: e’ =x’+x+c 

y=log,(+* +x+c) 

Finally, we use the condition p(1)=1 to determine c. 

1=log, (1’ +1+¢) 

1=log, (2+¢) 

e'=2+c 

c=e-2 

}/:IogL,(x2 +x+e~2) 

TR S S M e et R g g 

  

rdr=sin6d 6 

[rdr=[sinoa0 

r 
2 

Since 7(0)=1: 

=—cosf+c¢ 

1 
—=—cos0+¢ 
2 

3 
g=— 

i=—c059-¢—E 
2 2 

7 =-2cos0+3 

r=~-2cos0+3 

What is the domain? 

—2c0s0+320 

—2cos02-3 

2cos6<3 

cosGS2 
2 

which is all values.



    
Exercise E.11.2 

Solve the differenential equations: 

y a 2 r41,p(0)=2 = (0) 

  

&y x+1 
b Z="",41)=2 = 

dy _ x+1 22T )= e =0 

dy 1-e 
=== ,(0)=0 4 2= 2(0) 

  

  

av 3 
—=4nr-,V(0)=0 

f ar 7 ¥ (0) 

x)’3 

g Jx= =, 7(0)=-1 
T2 

dA  4r° 
h —=—",A4(0)=0 

/| © 

ay X Z_ (0)=0 
! dx log,y #0) 

dy x-3 I S N OR 
@ [y 

The rate of change of the concentration of a chemical in 

a manufacturing process is proportional to the square 

root of time (sec). After 100 sec, this rate of change is 

0.1 gm sec™". Initially, the concentration is zero. 

a Write a differential equation that represents this 

situation. 

b Find the solution of this equation. 

¢ Find the concentration after 50 seconds. 

DIFFERENTIATIAL"EQUATIONS 

A first order chemical reaction depends on the 

concentration of only one reactant and is directly 

proportional to that concentration. 

a Write a differential equation that represents this 

situation. 

b Find the solution of this equation. 

c Find the 'half-life’ of the reaction - the time 

taken for the concentration to halve/double. 

The stock price of Plastico has risen from $5.23 to 

$5.98 over the past 5 days. 

a Write a differential equation that represents this 

situation. 

b Is this equation useful in predicting the stock 

price a year hence? 

The bubbles released by a scuba diver rise to the 

surface at an approximately constant velocity. Boyle's 

Law states that the volume of a fixed mass of gas is 

inversely proportional to its pressure. 

a Write a differential equation that models the 

volume of a bubble in terms of time. 

b Find the general solution of that equation. 

Consider the equation: 

Y _ 2 —=¢""secy(1+27), ¥(0)=0 -~ y(1+2°), 7(0) 

a Write the equation with separated variables. 

b Find a general (implicit) solution to this 

equation. 

c Use the initial condition to find the value of the 

constant of integration. 
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Homogeneous Equations 

Homogeneous differential equations take the form: 

£ 
They can be solved using the substitution: y = vx. 

  

Some rearrangement needs to happen first. 

py_x ) 
dr y x 

{52 X X 

The fact that both terms can be expressed as [Z) is crucial 

to what follows: * 

Let y = vx. It follows that (substituting in the d.e.): 

y:vx:lzv 
& 

=] 
"lz(l) 2 
dr \x & 

=y 4 

Also, working from the expression y = vx: 

y=vx 

d—)lzv-i-xfl 
dx dx 

by the product rule. 

Putting these two results together: 

= dv 
vitr=v+r— 

/v 

i dv 
vV =X—— 

dx 

We can now separate the variables: 

v'dx = xdv 

ia.’r= vdy 
¥ 
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‘We can now use integration to solve the problem: 

J%d;r:_[vdv 

»? 

1 +log A=— 0B A TIOgA= 5 

Expressing the constant as a logarithm lets us use the Laws of 

Logs to simplify: 

log, x +log 4= ”7 

v =2log Ax 

v=/2log Ax 

Finally, we substitute back: »= 

2= 2log Ax 
X 

y=x,/2log kx 

Y 
x 

  

After the experience of the previous example, we are looking 

to rearrange the equation so we can again use the substitution 

y=vx: 

4 7 _ x x y+axe 

Y_I 
ar  x 

As before: )/=V,t'=:~%=y+xfl 
dx 

Next, separate the variables and integrate.



    

e"'dv=l¢r 
x 

<ot il 
je dV—delr 

- =log,x+¢c 

i/ 
—e "*=log,x+c 

Next, use the condition: y(1)=2 

—e 7 =log,l1+¢ 

c=—e" 

This leads to the (implicit) solution: —¢ Ve =log,x—¢” 

Bt E et SRR T o SR LR A 

Exercise E.11.3 

1. Find the general solution to the homogeneous first 

order differential equations: 

  

dx x+y 

d 3 2 2 

% Bolver L= TE i 
dx 2xy 

DIFFERENTIATIAL EQUATIONS 

Find the particular solution for the differential 

equation: 

(x2+)/2)%:,17.given thatx=1wheny=1. 

By using the substitution u = x + y, show that the 

differential equation: 

%:x+}/ 

can be reduced to: = =#+1. 
dx 

Hence show that the general solution is given by: 

x+ py+l=fe”. 

Use the substitution u = x + y + 1, to show that the 

differential equation: 

  dl: ! can be reduced to fi—lzl- 
dr  x+ p+1 dx u 

Hence show that the general solution is given by: 

x+ y+2="ke’ . 

Use the substitution y = ux, to show that the differential 

equation: 

a 2, 2 
X—)’=)/'+r‘+}’ can be reduced to %:ul+1. 

Hence show that the general solution is given by: 

y=xtan(x + c). 

Use the substitution y = ux, to show that: 

2 2 

@ — HHENE TN W)x >0 can be reduced to: 
dx x 

2 
Hence show that if the curve passes through the point 

(1, 0), the particular solution is given by: 

1, 
/:E(x'—l). 
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CHaAPTER EAA1 

  

& 2 (rr fr] 
8. Solve: x—=—= y+ o] =]l 0olve: xdr yt+xsmx 25 

@ _ . 9. Solve: ;%= y*—x*,(1,0 ovexydxyx() 

@ 10.  Solve: —2y=ux,(11 olve: x y=x,(11) 

The Integrating Factor 

A first-order linear differential equation, has the form: 

L4 px) y=atx) 
where 2(x) and Q(x) are continuous functions defined on 
some interval a < x < b. 

The reason that this type of d.e. is referred to as linear and 

of the first order is that the dependent variable y and @ / 

both occur in the first degree. L 

The simplest case of first order d.e.s. occurs when 2(x)=0 
giving us the d.e., d_}’z Q(x)- 

dx 

If Q(x) is ‘nice] this can usually solved by direct integration. 

In more complex cases, we may need to use a ‘trick’ (or rather 

method) similar to what we needed to do when we used the 

substitution y = ux in the previous section, the aim of which 

was to reduce a difficult d.e., into one that is more manageable. 

At this stage in your studies, it is probably sufficient to realise 

that these methods work. If you have time, it is always a good 

idea to understand why they work. 

Inthissection, wewilllookatmultiplying %+ Plx)y=0Q(x) 

J e 
throughout by: e 
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& 2 
ax x 

L1 pla) y=Q(x) wehave: P(x)=—2,Qlx)=+". 

Comparing 2 y= 1 with the general form, 

JflA')1& _ eI%m 
The integrating factor is: ¢ =¢ N = 17 (+c) 

We will drop the constant at this stage, but it cannot be 

forgotten entirely. We are after one integrating factor, not the 

general case. 

The method now depends on multiplying the d.e. throughout 

by the integrating factor to get: 

(dl—zijx*:(xj)xx’1 
x 

This does not look any better until we realise that the left 

hand side can be written as a single derivative. This is because 

of the Product Rule of differentiation: 

%(}/xx‘z)zi%xx’zfl—z)x’}xy 

(P 2 )\ (22 ) 
This is the same as the left hand side of the d.e. This can now 

be written: 

%(}/Xxfl:xsxx’z 

%(}/Xx’z):x 

Next, integrate both sides with respect to x: 

)/xx’zzj-xdr 

xl 

xxl="—+c 
7 2 

Recall that integration and differentiation are inverse 

processes and undo one another. Note also that the constant 

of integration now plays an important role in the solution. 

2 X 
yXx =—+c 

2 

. +er’ 
7 2 

This is the general solution of the d.e.



   

  

The first step is to compare the question with the standard d.e. 

y+2y=2e" 

a) S P(x)y=0Q(x) 
dx 

The two will match if we have 2(x)=2,Q(x)=2¢". 

The integrating factor is: ol _ Jeer 
2x 

=€ 

Multiplying both sides by this factor gives: 

(p+2y)xe =2¢" xe™ 

=2¢" 

As in the previous example, the left hand side can be written 

as a single derivative. Use the Product Rule to check that this 

is so. 

%(}/XEM):ZZU 

Next, integrate both sides. 

pyxe = J‘Ze” dx 

2 
==e¥+c 

2 e, =—e"+ce™ 
7 3 

Before proceeding, we will check that this is the correct 

solution. This is good general practice, but you will seldom 

have the time to do it in an examination. The check begins by 

working from the solution and differentiating. 

2 t e =—¢€ 

7 3 

5, . s 
y'==e¢* —2ce™" 

% 3 

2 2 2 .o . 
Substituting in the d.e. ge' —2ce™ +2[§e +ce™ ]:Ze‘ 

x D sl i s 5 
Zet =gt =2 + 2067 =2e 
3 3 

which is true, confirming the answer. 

a Let s(t) kg be the amount of salt in the container at any 

time t minutes. 

Amount in =2kgl' x 6l min"! 
=12 kg min™' ‘ 

| 
' 

' 
- . 

100+2/kg| ]x(4lmm ) 

4s o 
= kg min 

100+27 

  Amount out = [ 

  

Then, we have that the rate of change in the amount of 

salt in the container must be given by: 

ds 
Z: (Amount in - Amount out) (per minute) 

The ‘Amount in’ (per minute) is 12 kg min™', while the 

  ‘Amount out’ per minute is = kg min™". 
100+27 

The last term was derived as follows: 

First, we need to determine the concentration, C, of 

salt in the container at any time f, and, given: 

Amount of salt in container at any time 7 
  

" Volume of solution in container at any time # 

e 02 L 
100+(6—4)7 
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this is because: 

i by definition, we have that s kg is the amount of 

salt in the tank at any time t, 

ii initially there are 100 litres of solution in the 

container and every minute this increases by 

(6 — 4) = 2 litres, so that after t minutes, there 

will be an extra 2t litres in the container. 

Therefore, we have the differential equation: 

é_ _4s 

ar 100+2¢" 
  

Rearranging this so that it becomes directly comparable 

with the standard form: 

s 4s =4 =1 
dr 100+27 

  

4 

100+27 
  Therefore: 2(¢)= ,Q(2)=12 

The integrating factor is: 

4 gjlmm — plon(100+21) =(100+ 21)2 

Multiplying both sides of the d.e. by this: 

[ ds  A4s 
+   = 100+22) =12((100+2¢)’ 

ar 100+21]( ) (( )) 

As before, the left had side resolves to the single 
derivative: 

%(5)0001— 2r) =12((100+2¢)) 

Integrating: 

5(100+2¢)" = [12((100+2¢)" )t 

=2(100+2¢) +¢ 

N 
(100+2¢)° 

Now, when t =0, s = 50 so ¢ = -1 500 000 and: 

1500000 
(100+2£)" 

s=2(100+2¢)+ 

5=2(100+2¢)+ 

Therefore, when ¢ = 10, s = 135.83, i.e., approximately 

135.83 kg of salt remains. 

Exercise E.11.4 

L Find the general solution to the following first order 

linear differential equations: 

a E__}'zx ,x2>0 

b %4——/:):4,1 >0 

c %4—2}/:5 ! 

d %+2}/:x 

e %+%y:lfiz,x>0 

. Br, 

2. Solve the following differential equations: 

! %””-/:/(0):1 

b (x2+1)%—x)/:0,}/(0):3 

dr  15x 5224 2 _1,2(0)=—45 
‘ dr 50—t (0) 

d x%+}/=4x2,/(1)=0 

ay 1 

dx_x+}/21}/ 
  

Extra Questions 

  

 



Series 

A familiar series is the Geometric Series (GS) which is 

generated by a starting term, a (where #z€R ), and a ratio, r 

(where 7€R ), to give each term equal to r times the previous 

term and the series is the sum of these terms. The sequence of 

the first n terms is: 

i s 2 - - a,,a,,4,,..4, .4, which is a,ar,ar’,..ar"” ,ar" 

and the sum of these terms is the nth partial sum, 

" 
8,=2ar" 

=l 

Thisis: S, =a+ar+ar’+..+ar" +ar 

a(l—r”) 

1-r 

71 

This formula was derived in Chapter A2 of the Core text. 

For an infinite number of terms, if |r|<1 , then the geometric 
series converges (in the limit as 7 — co. Why?) to the sum: 

5 a 
atartar +..=—— 

1-r 

We set a = 1 (since a is just a multiplicative constant) and 

r = -x and so the sum of the geometric series becomes the 

formula: 

b s gl e =Y (-1).x" 
1+x I+ = 

which is valid for |x|<1 . This geometric series is now used as a 
formula to expand a function, 1/(1+x) , as a series with terms 

of powers of the variable x (with real coefficients). This is an 

example of a power series. In applications, the infinite series 

is truncated giving a polynomial approximation, of degree n, 

which is an approximation of the function. 

  
1 

The function /(x)= = is approximated by a series of 
x 

polynomials. 

For example, 2 =1 

A=1-x 

B=l-x+x 

1 
Whilst none of these polynomial are the same as /(x)=—— 

they do 'approximate' it. L5 

The approximation is centred on the point (0,1). P, has the 

right intercept. P, has the right intercept and the right slope at 

(0,1). P, also starts to 'bend' in the same way as fetc. 

Bl a S N\ QUATIONS 

  

Graphically, this is: 

  

os] 

    
The colour coding is: 

fis black, the constant function P, is blue, the linear function 

is orange, the quadratic is purple and the cubic is red. 

One very important thing to notice is that the extent to which 

the polynomials match to f spreads out from (0,1) as we 

take higher powers of the polynomials. This is because the 

derivatives of the polynomials increasingly match those of f. 

Exercise E.11.5 

L Extend the graphical representation of the polynomial 

approximations up to and including the fifth power. 

) 1 . 
2% If we use P, to estimate the value of —, what is the 

result and what error is made? 

3 Prove that 11—1 =090. 

Formally, the 'best' polynomial approximation (of degree 1) of 

a function, f(x), means that the function and the polynomial 

have the same value at x = 0, and all derivatives (up to and 

including the nth derivative) are the same at x = 0 for the 
function and for the polynomial approximation. 

Returning to: f(x)= % and our objective of finding a 
+x 

polynomial of the form: @, +a,x+a,x* +a,x" +a,x* +... that 
is equal to it. 

3 1 
We have: f(0)=——=1s02=a,=1 (as before). 

Next, we look at the first derivatives of both fand P 

-1 

ler)Z . 
  chain or quotient rule. 

—
 

259



  

CHAPTER E:1H 

=1 
s=a,=a=-1. 

(1+0) 

As before, this gives: A=1-x. 

Next, using x=0: /'(0)= 

Differentiatingagain:f"(x):fi::»f"(o): o ~=2   

and A =1-x+a,x" =2a, 

It follows that 2, =1and 2 =1-x+x’ 

Equality of the third derivatives (recall that f"'= f¥) gives: 

5y oy —2X3 gy oy =2X3 
A ’(X)—(1+X)4:>f‘ ’(X)—(1+0)1—~     

and for: 2 =1-x+x"+ax’ sothat 27 =3x2a,. 

This gives Z=1—x+x"—x". 

The pattern continues. For the example here, obtained from 

the geometric series, we obtain the same power series by 

progressively finding the 'best’ polynomial approximations: 

this is called the Maclaurin Series for the function, named for 

the Scottish mathematician Colin Maclaurin (1698 — 1746). 

The advantage of this calculus based method is that it can 

be applied to a wide range of functions as our next example 

shows. 

  

We assume that the function f(x)=sinx canbe expressed as 

apolynomial P(x)=a,+ax+a,x’+ax' +ax' +a.x +.. 

All our calculations will occur at x = 0. 

/(0)=5in0=0,2(0)=a, so we now have: 

F(x)=sin(x)=> £(0)=sin(0)=0=>4,=0 
Next, we differentiate both the approximating polynomial 

and the function: 

P(x)=a+2a,x+3ax" +4a,.x" +5a.x" +..= P'(0)=a, 

S(x)=cos(x)= f£'(0)=cos(0)=1=4,=1 

This gives the first non-zero coefficient. 
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Differentiate again: 

P'(x)=2a,+32ax+43a,x" +54a.x" +..= P"(0)=2a, 

f(x)=-sin(x)= £"(0)=-sin(0)=0=4,=0 

Differentiate again: 

P(x)=321a,+4324,x+543a.1 +..= PP (0)=321a, 

S (x)=—cos(x)= fP(0)=-cos(0)=-1=2,= ;—;1 

and again: 

PN x)=4321a,+5432a.x+..= PV(0)=4321a, 

S (x)=sin(x)= £(0)=5in(0)=0=2,=0 

and again: 

PI(x)=54321a,+..= P(0)=54321a, 

SO (x)=cos(x)= /(0)=cos(0)=1=a,=   

    

54321 
3 xrv 

So far, we have: x)=sin(x)=x— + 
ar, wehave: f(x)=sin(z)=z-5 4 

or, using the factorial notation: 
3 5 

; & X 
f(x)=sin(x)= xfgfi—g 

This is a pattern that continues indefinitely so that, using the 

sigma notation: 

sin(x)=i—(_l)”xz"fl 
=0 (Z’H' 1)! 

This is a complex formula, so look at the parts that make it 

up. We only have odd powers. That is why we have 2n + 1. 

Substitute n = 0, 1, 2,... and you get the odd numbers 1, 3, 5,... 

The (-1)" gives the alternating signs. 

As we did before, we will look at the approximating 

polynomials and the extent to which they fit the sine function 

in the region of the origin. 

o5’ 

  

Sine is dotted, linear blue, cubic orange and quintic purple.



    
Convergence 

We have discussed the idea of convergence in the context of 

geometric series. 

Lt converges only for -1 < x <1. 
14 

This is due to the properties of powers of x. If x is bigger than 

1 or less than -1, these are large. Between these two, powers 

of x get small. 

3 5i 

The series sin(x)= =it s converges for all real 

values of x. 3B 

This is despite the powers of x in the numerator. The factorials 

in the denominators 'outgrow’ them and the terms decrease 

rapidly. 

Note. The degree 1 polynomial approximation sin(x)~x 

has at least two uses: 

Physics: 

sin(x)=x is an approximation used in physics to model 

the behaviour of an oscillating pendulum. The differential 
equation obtained has a sin(x) term and it is too difficult to 

solve (exactly). However if sin(x)=x is used, the differential 

equation is easily solved. This is a reasonable approximation 

for small values of x (narrow pendulum swings). 

Navigation: 

A pilot who observes a cross-wind correction of 5° (the 

difference between the actual track and the aircraft heading - 

quite easy to observe) has to know only that 1° = 0.02 radians. 

The rest can be done in the head. 5° = 0.1 radians. If the 

airspeed is 200 knots (hypotenuse) the cross-wind is 20 knots. 

Other examples 

The differentiation method can be used in a number of cases 

(see the next exercise). 

So can direct substitution, as our next example shows. 

  

T : 1 
We use the first series in this section T I—x+x =2 +.. 

+x 

DIFFERENTIATIAL 

We can achieve our result by substituting x* for x. 

:1—(x2)+(x:)2—(xl)3+... 

=l-xt+x' -2 +.. 

1 

1+x° 

  

Since the series expansion converges for [x| < 1, the new series 

will also converge for |x| < 1 which is the same interval as for 

the original series. 

Exercise E.11.6 

L. Use the differentiation method to find series 

expansions for: 

4. Use the identity: tan(x):M to find the first 
cos(x) 

three terms in the expansion of the MacLaurin series 

for tan(x). 

to write down the   5. Use the GS expansion for - 
X 

« ; 2 
Maclaurin series for /(x)=——. 

. 3-x 

a for what x values does the series converge? 

b Show the f(x) and the cubic approximation on 

the same plot. 

6. Use a series argument to prove that: 

e =cos(x)+7sin(x) 
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CHAPTER E-11 

Maclaurin Series and Differential 

Equations 

In previous sections, we have solved differential equations of 

the form: 

A __an 
ar 

mainly in the context of natural decay such as radioactivity. 

The differential equation's solution, with C an arbitrary 

constant, is: 

N:e-l/fi, =Ce At 

For radioactive decay, the initial number of atoms (at time 

zero), N, = N(0), is known. Thus the solution of the initial 

value problem is: 

N=N,e™ 0 

Alternatively, we now obtain this solution by directly 

computing the Maclaurin series. For this problem, we notice 

that we can obtain the full Maclaurin series and recognize the 

solution function (which is not generally possible). 

Let the solution N(f) have a Maclaurin series 

N(O)=Yat [=a+at+al +al +..] 
i=0 

The derivative, N'(t),is obtained by term by term differentiation 

(with respect to t). The differential equation becomes: 

N'(t)=a+2at+3at’ +4a,t’ +... 

= —l(a(, +at+al +al’+ ) 

This is true for all valid values of t, so the coefficients of 

any given power of t must be the same for both sides of the 

equation. Equate coefficients as follows: 

t':a,=—Aa, 

P o _(A) 4, 
o2 2 

3 

Fa,= —Aa, - (_/1) 4 

3 3! 

t":”q = —Aay = (*1)4 4 

4 4! 

etc. 
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The quartic Maclaurin polynomial is: 

A A At 

  

}’4:an*”o/l""”oifz“”ugfl“"fluzfq 

A, A, A 
:a”(l—lt+ P-=r+=r 

2! 3! 4! 

The pattern continues. Compare this with the series you found 

for the exponential function in Exercise E.11.6 question 1.b. 

It follows that the Maclaurin series solution of the differential 

equation is: 

N(t)= flD.L”X' where is a, an arbitrary value. 

If we are talking about radioactive decay, a, is the initial 

number of atoms and we have the solution already discussed. 

N(t)=N,e™. 

  

Begin by assuming that a series solution exists and that: 

y(x)=a,tax+ax’+ax’taxt+.. 

Differentiate term by term: 

’ - 2 3 
y(x)=a+2a,x+3ax" +4a,x +... 

Next, substitute these two series into both sides of the 

differential equation: 

Left: y'(x)=a+2a,x+3ax" +4a,2" +... 

Right: =24y = —2x(a“ tax+ax’+ax’ +axt+ ) 

=—2a,x— 2a1x2 = Zalx" = Zalx‘... 

If these two are to be identical, then they must be the same for 

each power of x in turn (this is called 'equating coefficients’). 

x':a,=0 

x'2a,=-2a,=>a,=-a, 

x*3a,=-2a,=a,=0 

4, 
xda,=-2a,=2a,=a,= 7" 

So far we have generated the series:



  

y(x)=a,-ax’ -i»%x4 +.. 

This is not really far enough to establish a pattern. For 

example, is the next term going to be negative? Is the next 

denominator going to be 4 or 4! or something else? 

Y(x)=43a,x +ha,x +5a.x" +6a.0° + ... 

—2ay=..—2ax" —2a,x" —2ax" —2a,x" - 2a.x"—.. 

Continuing to equate coefficients: 

x'5a,=-2a,=a,=0 

4y 

3x2 
  x°:6a,=—2a,=2a,=a,=— 

‘We can now add the next term to our series: 

q, 
0.   2, 4y 4 x)=a,~ax +—x' = y(x)=a,~a, 2 3%2 

The pattern is much clearer now, though you may wish to 

clarify it by continuing this process. The solution series 

appears to be: 

a a a 
Yx)=a,—ax’ + 2t =L+ Lyt 

2 3! 4! 

1 1 1 
=au(1-x2 +—x ——x"+fx“...) 

A7 3T a4 

We can, however go a step further by identifying the series as 

Hx)=ae™ 

S e A L . T T F O e 

Our next example is related to the previous one and we will 

solve it using the sigma notation. 

  

Let y have the Maclaurin series: y(x)=Y a.x". 
=0 

As before the derivative of the left hand side of the differential 

equation is obtained by term by term differentiation. The 

differential equation becomes: 

ii.a,x"l = 2x(1+)/) 
=0 

=2x+ Zx.ia,x’ 
= 

=2x+ Zia/x”*' 
=0 

DIFFERENTIATIAL EQUATIONS 

The key step is now to equate coefficients of powers of x. The 

summations have different looking powers of x, so to make it 

easy, we re-label the powers of x in the summations. On the 

left hand side, let j = i —1; the summation starts from i = 1, so 

j=0. 

Similarly, on the right hand side, let k = i +1. The summation 

starts from i = 0 so k = 1, thus: 

N(j+1)a, 0’ = 2x+2iaHx‘ 
= = 

The next step is to equate coefficients of powers of x (with 

j =k), as follows: 

2%, =0+0 

x'2a,=2+2a,=a,=1+a, 

x*3a,=+24,=0 

  

  

  

1+4 
xda,=12a,=a,= > = 

x'5a,=+2a,=0 

. 1+a4 
x’6a,=+2a,=a,= 3 2 

x%7a,=+24,=0 

1+a, 
¥ 8a,=+2a,=a,= 2 2 

etc. 

Note that all odd powers (in the Maclaurin series for y) have 

coefficient zero. 

Note also that is arbitrary. Since 1+ a, is repeated in the 

coefficients as a multiplicative constant, we simplify the 

expression by setting K= 1 +a, 50 a, =K - 1 where K becomes 

the arbitrary constant. 

The degree 8 Maclaurin polynomial for the solution of the 

differential equation is: 

K K . K 
=K1+ K+ —x'+ =" +—2' 

2! 3 4! 

2 1 4 1 6 1 8 
=K|l+xr +—x'+—x"+—x |-1 

2! 3! 4! 

Now compare this with the series you would obtain by 

making the substitution x>x” in the series for the exponential 

function. 

The solution for p’=2x(1+ p) is: 

y(x)= l(ii‘(xz)" —1=Ke" —1 
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CHaPTER E:1:1 

If you have found the use of the sigma notation confusing, 

make sure you work through the first question in the next 

exercise. 

Solving differential equations are closely related problems. 

Series can help with some 'difficult’ integrals as our final 

example should demonstrate. 

  

There is an interesting question here as to whether or not this 

integral even exists as we seem to have a zero denominator 

at the lower limit. However, a quick visit to L'Hopital's Rule 

should convince you that all is well. 

The series for the sine function is: 

  sin(x)=x——+ £ 2, 
3 5 7 

2 2 4 6 

It follows that: &(x): =& g A 
X 31 57! 

Since this is polynomial, it can be integrated term by term. 

¥ 2 4 6 

(i j'[l_i+if_+...]dx 
o x 0 31 5 7 

Pl s # i 
=l ———F————+... 

3x3!l 5x5! 7x7! o 

1 1 1 
-+ 

18 600 35280 

Is this far enough to be sure we have 5 significant figures? 

The decimal answer so far is: 0.9460827664 

The next term is   ! . 3x107 . We have enough accuracy. 
9% 9! 

The integral is: 0.94608 to 5 s.f. 

(e S e R = P N s R R 

Exercise E.11.7 

L Consider the problem of Example E.11.17: 

Solve: )/':2x(1+ ”) 

Rework this example without using the sigma notation. 
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2 For the initial value problem: »'(x)=2- y, »(0)=1 

Find the exact solution. 

Find the exact Maclaurin polynomial of degree 

4. 

Show the answers to parts a & b graphically. 

3. For the initial value problem: y'(x)=2+2y, »(0)=1 

a Find the exact solution. 

b Find the exact Maclaurin polynomial of degree 

4. 

c Show the answers to parts a & b graphically. 

Lo gy 
4. Find, correct to 5 significant figures: _[n xedx 

1 - 

5. Find, correct to 5 significant figures _[04’ *sin(x)dx 

Extra questions 

Answers 
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Higher Derivatives 205 

Homogeneous Equation 254 

Horizontal asymptote 77 

I 

Identity and inverse functions 86 

Imaginary Number 64 

Implicit Differentiation 213 

Implicit relation 213 

Induction 49 

Inequalities 95 

Inequations 95 

Integration 225 

Integration by Parts 239 
Intersection of a Line and a Plane 172 

Intersection of Three Planes 175 
Intersection of Two Lines 172 

Intersection of Two Planes 174 

Inverse Cosine Function 110 

265



  

  

Inverse functions 86 

Inverse Sine Function 109 

Inverse Tangent Function 112 

J 

Joukowsky aerofoil 92 
Joukowsky transformation 92 
Jump discontinuities 200 

K 
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